Anthropoid cranial base architecture and scaling relationships
This paper examines how various measures of basicranial length and cranial base angulation affect the relationship between basicranial flexion and relative brain size in anthropoids, including Homo sapiens. Most recent studies support the “spatial packing” hypothesis, that basicranial flexion in hap...
Gespeichert in:
Veröffentlicht in: | Journal of human evolution 2001-01, Vol.40 (1), p.41-66 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper examines how various measures of basicranial length and cranial base angulation affect the relationship between basicranial flexion and relative brain size in anthropoids, including Homo sapiens. Most recent studies support the “spatial packing” hypothesis, that basicranial flexion in haplorhines maximizes braincase volume relative to basicranial length. However, a few studies find the basicranium is less flexed in H. sapiens than expected for other anthropoids, suggesting that other factors contribute to variation in hominin basicranial flexion. The measure of relative brain size used to test the spatial packing hypothesis, the Index of Relative Encephalization (IRE), is calculated with basicranial length (BL) in its denominator, so that shorter BL and larger brain size potentially inflate H. sapiens IREs. To investigate this problem, the lengths of midline cranial floor sections were scaled relative to the cube root of endocranial volume in 157 specimens from 18 anthropoid species. Results indicate that the posterior cranial base and planum sphenoideum are significantly shorter in H. sapiens than in other anthropoids, accounting for higher IREs. Including the cribriform plate in BL, advisable in studies using anthropoids, affects whether H. sapiens differs from other anthropoids for basicranial flexion vs. IRE. However, despite a shorter BL and elevated IRE, H. sapiens does not deviate significantly from the anthropoid relationship between basicranial flexion and relative brain size for two cranial base angles. Because different measures of cranial base angulation change how H. sapiens falls along the anthropoid regression line, it remains equivocal whether the basicranium is less flexed in H. sapiens than in other anthropoids when compared to relative brain size. |
---|---|
ISSN: | 0047-2484 1095-8606 |
DOI: | 10.1006/jhev.2000.0446 |