Detection and analysis of depolarization artifacts in rotating-compensator polarimeters

Absolute constraints, namely, the Schwarz inequality and a complementary expression derived by us, are used to obtain corresponding absolute constraints on the Fourier coefficients of the intensity transmitted through rotating-compensator polarimeters and ellipsometers. These expressions allow the i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Optical Society of America. A, Optics, image science, and vision Optics, image science, and vision, 2001-02, Vol.18 (2), p.426-434
Hauptverfasser: Li, S F, Opsal, J, Chu, H, Aspnes, D E
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Absolute constraints, namely, the Schwarz inequality and a complementary expression derived by us, are used to obtain corresponding absolute constraints on the Fourier coefficients of the intensity transmitted through rotating-compensator polarimeters and ellipsometers. These expressions allow the investigation of artifacts that result in mixed or apparently mixed polarization states over the cross section of the beam, the averaging time of the detector, or the frequency passband of the dispersing element. Examples include multiple internal reflections or inhomogeneous strain within an element, scattered light, and other types of system and component defects that cannot be accessed by means of polarization-state data alone. We apply these results to our polarizer-sample-compensator-analyzer (PSCA) ellipsometer to illustrate capabilities. A simple analytic model is shown to give a quantitative description of depolarization in systems for which the resolution is finite and the retardation varies with wavelength.
ISSN:1084-7529
1520-8532
DOI:10.1364/JOSAA.18.000426