CXCR4 down-regulation by small interfering RNA inhibits invasion and tubule formation of human retinal microvascular endothelial cells

The progressive alterations to the retinal microvasculature in diabetic retinopathy are known to cause vision loss. Chemokines are characterized by their ability to induce cell invasion, adhesion and migration. In this study, we used double siRNA transfection to transiently and selectively decrease...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2007-07, Vol.358 (4), p.990-996
Hauptverfasser: Yu, Keming, Zhuang, Jing, Kaminski, Joseph M., Ambati, Bala, Gao, Qianying, Ma, Ping, Liao, Dongjiang, Li, Fan, Liu, Xuan, Ge, Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The progressive alterations to the retinal microvasculature in diabetic retinopathy are known to cause vision loss. Chemokines are characterized by their ability to induce cell invasion, adhesion and migration. In this study, we used double siRNA transfection to transiently and selectively decrease the level of the endogenous CXCR4 in human retinal microvascular endothelial cells (HRMECs). The functional consequences of silencing CXCR4 expression in HRMECs were investigated using an endothelial cell migration assay and tubule formation in Matrigel. When CXCR4 expression was decreased with siRNA, HRMECs were less invasive and also resulted in markedly diminished vascular networks on Matrigel as compared to the controls. Additionally, hypoxia and VEGF, the factors affecting microvascular, regulate the expression level of CXCR4 in HRMECs, respectively, which have synergistic, additive effect in the HRMECs. As such, CXCR4 antagonists may become a therapeutic target for the treatment of retinal angiopathies.
ISSN:0006-291X
1090-2104
DOI:10.1016/j.bbrc.2007.05.004