comparison of daily water use estimates derived from constant-heat sap-flow probe values and gravimetric measurements in pot-grown saplings

Use of Granier-style heat dissipation sensors to measure sap flow is common in plant physiology, ecology and hydrology. There has been concern that any change to the original Granier design invalidates the empirical relationship between sap flux density and the temperature difference between the pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tree physiology 2007-09, Vol.27 (9), p.1355-1360
Hauptverfasser: McCulloh, K.A, Winter, K, Meinzer, F.C, Garcia, M, Aranda, J, Lachenbruch, B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Use of Granier-style heat dissipation sensors to measure sap flow is common in plant physiology, ecology and hydrology. There has been concern that any change to the original Granier design invalidates the empirical relationship between sap flux density and the temperature difference between the probes. Here, we compared daily water use estimates from gravimetric measurements with values from variable length heat dissipation sensors, which are a relatively new design. Values recorded during a one-week period were compared for three large pot-grown saplings of each of the tropical trees Pseudobombax septenatum (Jacq.) Dugand and Calophyllum longifolium Willd. For five of the six individuals, P values from paired t-tests comparing the two methods ranged from 0.12 to 0.43 and differences in estimates of total daily water use over the week of the experiment averaged < 3%. In one P. septenatum sapling, the sap flow sensors underestimated water use relative to the gravimetric measurements. This discrepancy could have been associated with naturally occurring gradients in temperature that reduced the difference in temperature between the probes, which would have caused the sensor method to underestimate water use. Our results indicate that substitution of variable length heat dissipation probes for probes of the original Granier design did not invalidate the empirical relationship determined by Granier between sap flux density and the temperature difference between probes.
ISSN:0829-318X
1758-4469
DOI:10.1093/treephys/27.9.1355