Ultrarapid mixing experiments reveal that Im7 folds via an on-pathway intermediate
Many proteins populate partially organized structures during folding. Since these intermediates often accumulate within the dead time (2–5 ms) of conventional stopped-flow and quench-flow devices, it has been difficult to determine their role in the formation of the native state. Here we use a micro...
Gespeichert in:
Veröffentlicht in: | Nature Structural Biology 2001, Vol.8 (1), p.68-72 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Many proteins populate partially organized structures during folding. Since these intermediates often accumulate within the dead time (2–5 ms) of conventional stopped-flow and quench-flow devices, it has been difficult to determine their role in the formation of the native state. Here we use a microcapillary mixing apparatus, with a time resolution of ∼150 μs, to directly follow the formation of an intermediate in the folding of a four-helix protein, Im7. Quantitative kinetic modeling of folding and unfolding data acquired over a wide range of urea concentrations demonstrate that this intermediate ensemble lies on a direct path from the unfolded to the native state. |
---|---|
ISSN: | 1072-8368 1545-9993 1545-9985 |
DOI: | 10.1038/83074 |