Influence of magnesium deficiency on the bioavailability and tissue distribution of iron in the rat
We investigated the effect of dietary magnesium (Mg) deficiency on the nutritive utilization and tissue distribution of iron (Fe). Wistar rats were fed an Mg-deficient diet (56 mg/kg) for 70 days. Absorbed Fe, Fe balance, number of the erythrocytes [red blood cells (RBC)] and leukocytes white blood...
Gespeichert in:
Veröffentlicht in: | The Journal of nutritional biochemistry 2000-02, Vol.11 (2), p.103-108 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigated the effect of dietary magnesium (Mg) deficiency on the nutritive utilization and tissue distribution of iron (Fe). Wistar rats were fed an Mg-deficient diet (56 mg/kg) for 70 days. Absorbed Fe, Fe balance, number of the erythrocytes [red blood cells (RBC)] and leukocytes white blood cells (WBC)], hemoglobin (Hb), and Fe content were determined in samples of plasma, whole blood, skeletal muscle, heart, kidney, liver, spleen, femoral bone, and sternum obtained on experimental days 21, 35, and 70. The Mg-deficient diet significantly increased Fe absorption and Fe balance from week 5 until the end of the experimental period. This effect was accompanied by a significant decrease in the concentration of RBC and Hb from day 35, which caused the decrease in whole blood Fe seen on day 70. However, WBC were significantly increased from day 21 until the end of the experimental period. Mg deficiency significantly increased plasma and liver Fe at all three time points investigated. Spleen, heart, and kidney Fe were significantly increased only at the end of the study. However, on day 70, Fe concentration in the sternum had decreased significantly. No changes were found in skeletal muscle or femur Fe content. Mg deficiency led to increased intestinal absorption of Fe and decreased RBC counts, possibly as a result of increased fragility of the erythrocytes. Intestinal interactions between Fe and Mg, together with activation of erythropoiesis as a result of hemolysis, favored intestinal absorption of Fe. This situation gave rise to an increase in plasma Fe levels, which in turn favored Fe uptake and storage by different organs, especially the liver and spleen. However, despite the increased Fe content seen in the tissues of rats fed the Mg-deficient diet, these animals were unable to compensate for the hemolysis caused by this nutritional deficiency. |
---|---|
ISSN: | 0955-2863 1873-4847 |
DOI: | 10.1016/S0955-2863(99)00076-5 |