Use of Two-Block Partial Least-Squares to Study Covariation in Shape

The relatively new two-block partial least-squares method for analyzing the covariance between two sets of variables is described and contrasted with the well-known method of canonical correlation analysis. Their statistical properties, types of answers, and visualization techniques are discussed. E...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Systematic biology 2000-12, Vol.49 (4), p.740-753
Hauptverfasser: Rohlf, F. James, Corti, Marco, Olmstead, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The relatively new two-block partial least-squares method for analyzing the covariance between two sets of variables is described and contrasted with the well-known method of canonical correlation analysis. Their statistical properties, types of answers, and visualization techniques are discussed. Examples are given to show its usefulness in comparing two sets of variables—especially when one or both of the sets of variables are shape variables from a geometric morphometric study.
ISSN:1063-5157
1076-836X
DOI:10.1080/106351500750049806