Infrared target tracking with kernel-based performance metric and eigenvalue-based similarity measure
An infrared target tracking framework is presented that consists of three main parts: mean shift tracking, its tracking performance evaluation, and position correction. The mean shift tracking algorithm, which is a widely used kernel-based method, has been developed for the initial tracking for its...
Gespeichert in:
Veröffentlicht in: | Applied Optics 2007-06, Vol.46 (16), p.3239-3252 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An infrared target tracking framework is presented that consists of three main parts: mean shift tracking, its tracking performance evaluation, and position correction. The mean shift tracking algorithm, which is a widely used kernel-based method, has been developed for the initial tracking for its efficiency and effectiveness. A performance evaluation module is applied for the online evaluation of its tracking performance with a kernel- based metric to unify the tracking and performance metric within a kernel-based tracking framework. Then the tracking performance evaluation result is input into a controller in which a decision is made whether to trigger a position correction process. The position correction module employs a matching method with a new eigenvalue-based similarity measure computed from a local complexity degree weighted covariance matrix. Experimental results on real-life infrared image sequences are presented to demonstrate the efficacy of the proposed method. |
---|---|
ISSN: | 1559-128X 0003-6935 1539-4522 |
DOI: | 10.1364/AO.46.003239 |