Nanoporous structure of a GdF(3) thin film evaluated by variable angle spectroscopic ellipsometry

As excimer lasers extend to deep-ultraviolet and vacuum-ultraviolet wavelengths at 193 and 157 nm, optical coatings experience the challenge of eliminating possible environmental contamination, reducing scattering loss, and increasing laser irradiation durability. Wide bandgap metal fluorides become...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied optics (2004) 2007-06, Vol.46 (16), p.3221-3226
Hauptverfasser: Wang, Jue, Maier, Robert, Dewa, Paul G, Schreiber, Horst, Bellman, Robert A, Elli, David Dawson
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As excimer lasers extend to deep-ultraviolet and vacuum-ultraviolet wavelengths at 193 and 157 nm, optical coatings experience the challenge of eliminating possible environmental contamination, reducing scattering loss, and increasing laser irradiation durability. Wide bandgap metal fluorides become the materials of choice for the laser optics applications. To understand the optical properties of nanostructure fluoride films, thin GdF(3) films grown on CaF(2) (111) substrates were evaluated by variable angle spectroscopic ellipsometry. An effective medium approximation model was used to determine both the film porosity and the surface roughness. Structural evolution of the GdF(3) film was revealed with improved ellipsometric modeling, suggesting the existence of multilayer structure, a densified bottom layer, middle layers with increasing porosity, and a rough surface. The nanostructure of the film and the surface roughness were confirmed by atomic force microscopy. The attraction of the nanostructure to environmental contamination was experimentally demonstrated.
ISSN:1559-128X