Biochemical characterization of the zinc-finger protein 217 transcriptional repressor complex: identification of a ZNF217 consensus recognition sequence

Zinc-finger protein 217 (ZNF217) is a Kruppel-like zinc-finger protein located at 20q13.2, within a region of recurrent maximal amplification. Here, we demonstrate that ZNF217 is a transcriptional repressor protein and report the purification and characterization of a ZNF217 complex. The purified ZN...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncogene 2007-05, Vol.26 (23), p.3378-3386
Hauptverfasser: Cowger, J J M, Zhao, Q, Isovic, M, Torchia, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Zinc-finger protein 217 (ZNF217) is a Kruppel-like zinc-finger protein located at 20q13.2, within a region of recurrent maximal amplification. Here, we demonstrate that ZNF217 is a transcriptional repressor protein and report the purification and characterization of a ZNF217 complex. The purified ZNF217 complex consists of approximately six proteins and contains the transcriptional co-repressors CoREST, BHC110/LSD1, histone deacetylase (HDAC) 2 and C-terminal binding protein (CtBP1). The purified ZNF217 complex possesses deacetylase activity as well as lysine 4 histone H3-specific demethylase activity that is most likely mediated by the BHC110/LSD1 component. To determine if ZNF217 is a sequence-specific binding protein, we have made use of cyclic amplification and selection of targets (CAST) assay and identify for the first time a ZNF217 DNA consensus recognition sequence (CRS) that is highly conserved in the human E-cadherin promoter. Chromatin immunoprecipitation (ChIP) experiments demonstrate that ZNF217, as well as the other components of the ZNF217 complex, are found on the region of the proximal E-cadherin promoter that contains the identified ZNF217 CRS in vivo . Using a combination of transient transfections and small interfering RNA, we demonstrate that ZNF217 represses the E-cadherin promoter. Collectively, our results implicate ZNF217 and its associated proteins in a novel pathway that may have profound effects on cancer progression.
ISSN:0950-9232
1476-5594
DOI:10.1038/sj.onc.1210126