F-actin binding is essential for coronin 1B function in vivo
Coronins are conserved F-actin binding proteins that have been implicated in a variety of processes including fibroblast migration, phagocytosis, and chemotaxis. Recent data from our lab indicate that coronin 1B coordinates Arp2/3-dependent actin filament nucleation and cofilin-mediated filament tur...
Gespeichert in:
Veröffentlicht in: | Journal of cell science 2007-05, Vol.120 (10), p.1779-1790 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Coronins are conserved F-actin binding proteins that have been implicated in a variety of processes including fibroblast migration, phagocytosis, and chemotaxis. Recent data from our lab indicate that coronin 1B coordinates Arp2/3-dependent actin filament nucleation and cofilin-mediated filament turnover at the leading edge of migrating fibroblasts. Analysis of coronin function has been hampered by the lack of a clear understanding of how coronin interacts with F-actin. Here, we identify a surface-exposed conserved arginine residue at position 30 (R30), which is crucial for coronin 1B binding to F-actin both in vitro and in vivo. Using actin co-sedimentation, we demonstrate that coronin 1B binds with high affinity to ATP/ADP-Pi-F-actin (170 nM) and with 47-fold lower affinity to ADP-F-actin (8 μM). In contrast to a previous study, we find no evidence for enhanced cofilin binding to F-actin in the presence of either coronin 1B or coronin 1A. Instead, we find that coronin 1B protects actin filaments from cofilin-induced depolymerization. Consistent with an important role for interactions between coronin 1B and F-actin in vivo, an R30D coronin mutant that does not bind F-actin localizes inefficiently to the leading edge. Furthermore, our analysis indicates that F-actin binding is absolutely required for coronin 1B to exert its effects on whole-cell motility and lamellipodial dynamics. |
---|---|
ISSN: | 0021-9533 1477-9137 |
DOI: | 10.1242/jcs.007641 |