Rigorous formulation for electromagnetic plane-wave scattering from a general-shaped groove in a perfectly conducting plane
Scattering of an obliquely incident plane wave by a general-shaped groove engraved on a perfectly conducting plane is rigorously solved. The scattered field is represented by a Fourier-integral representation. To analytically represent the fields in a general-shaped groove, the groove is divided int...
Gespeichert in:
Veröffentlicht in: | Journal of the Optical Society of America. A, Optics, image science, and vision Optics, image science, and vision, 2007-06, Vol.24 (6), p.1647-1655 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Scattering of an obliquely incident plane wave by a general-shaped groove engraved on a perfectly conducting plane is rigorously solved. The scattered field is represented by a Fourier-integral representation. To analytically represent the fields in a general-shaped groove, the groove is divided into L number of layers. Fields are then expressed in each layer as summations of 2D spatial harmonic fields with unknown coefficients. Matching the boundary conditions between layers provides a linear set of equations connecting all the unknown harmonic coefficients. Judicious use of Fourier transform on the equations resulting from matching boundary conditions at the groove aperture provides a series representation of the scattered field in the spectral domain with unknown harmonic coefficients of the first layer in the groove. A stable solution is obtained by solving the complete system of equations with an adaptive choice for the number of modes in each layer. |
---|---|
ISSN: | 1084-7529 1520-8532 |
DOI: | 10.1364/JOSAA.24.001647 |