Mechanical and biological properties of hydroxyapatite/tricalcium phosphate scaffolds coated with poly(lactic-co-glycolic acid)
Regeneration of bone, cartilage and osteochondral tissues by tissue engineering has attracted intense attention due to its potential advantages over the traditional replacement of tissues with synthetic implants. Nevertheless, there is still a dearth of ideal or suitable scaffolds based on porous bi...
Gespeichert in:
Veröffentlicht in: | Acta biomaterialia 2008-05, Vol.4 (3), p.638-645 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Regeneration of bone, cartilage and osteochondral tissues by tissue engineering has attracted intense attention due to its potential advantages over the traditional replacement of tissues with synthetic implants. Nevertheless, there is still a dearth of ideal or suitable scaffolds based on porous biomaterials, and the present study was undertaken to develop and evaluate a useful porous composite scaffold system. Here, hydroxyapatite (HA)/tricalcium phosphate (TCP) scaffolds (average pore size: 500
μm; porosity: 87%) were prepared by a polyurethane foam replica method, followed by modification with infiltration and coating of poly(lactic-co-glycolic acid) (PLGA). The thermal shock resistance of the composite scaffolds was evaluated by measuring the compressive strength before and after quenching or freezing treatment. The porous structure (in terms of pore size, porosity and pore interconnectivity) of the composite scaffolds was examined. The penetration of the bone marrow stromal stem cells into the scaffolds and the attachment of the cells onto the scaffolds were also investigated. It was shown that the PLGA incorporation in the HA/TCP scaffolds significantly increased the compressive strength up to 660
kPa and the residual compressive strength after the freezing treatment decreased to 160
kPa, which was, however, sufficient for the scaffolds to withstand subsequent cell culture procedures and a freeze–drying process. On the other hand, the PLGA coating on the strut surfaces of the scaffolds was rather thin ( |
---|---|
ISSN: | 1742-7061 1878-7568 |
DOI: | 10.1016/j.actbio.2007.10.006 |