Self-Assembly, Molecular Dynamics, and Kinetics of Structure Formation in Dipole-Functionalized Discotic Liquid Crystals

The self-assembly, the molecular dynamics, and the kinetics of structure formation are studied in dipole-functionalized hexabenzocoronene (HBC) derivatives. Dipole substitution destabilizes the columnar crystalline phase except for the dimethoxy- and monoethynyl-substituted HBCs that undergo a rever...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2008-04, Vol.130 (15), p.5311-5319
Hauptverfasser: Elmahdy, Mahdy M, Dou, Xi, Mondeshki, Mihail, Floudas, George, Butt, Hans-Jürgen, Spiess, Hans W, Müllen, Klaus
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The self-assembly, the molecular dynamics, and the kinetics of structure formation are studied in dipole-functionalized hexabenzocoronene (HBC) derivatives. Dipole substitution destabilizes the columnar crystalline phase except for the dimethoxy- and monoethynyl-substituted HBCs that undergo a reversible transformation to the crystalline phase. The disk dynamics are studied by dielectric spectroscopy and site-specific NMR techniques that provide both the time-scale and geometry of motion. Application of pressure results in the thermodynamic phase diagram that shows increasing stability of the crystalline phase at elevated pressures. Long-lived metastability was found during the transformation between the two phases. These results suggest new thermodynamic and kinetic pathways that favor the phase with the highest charge carrier mobility.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja7113618