Fabrication of a versatile substrate for finding samples on the nanometer scale

With increasing interest in nanometer scale studies, a common research issue is the need to use different analytical systems with a universal substrate to relocate objects on the nanometer scale. Our paper addresses this need. Using the delicate milling capability of a focused ion beam (FIB) system,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of microscopy (Oxford) 2008-04, Vol.230 (1), p.32-41
Hauptverfasser: NOWAK, D.B, VATTIPALLI, M.K, ABRAMSON, J.J, SÁNCHEZ, E.J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 41
container_issue 1
container_start_page 32
container_title Journal of microscopy (Oxford)
container_volume 230
creator NOWAK, D.B
VATTIPALLI, M.K
ABRAMSON, J.J
SÁNCHEZ, E.J
description With increasing interest in nanometer scale studies, a common research issue is the need to use different analytical systems with a universal substrate to relocate objects on the nanometer scale. Our paper addresses this need. Using the delicate milling capability of a focused ion beam (FIB) system, a region of interest (ROI) on a sample is labelled via a milled reference grid. FIB technology allows for milling and deposition of material at the sub 20-nm level, in a similar user environment as a standard scanning electron microscope (SEM). Presently commercially available transmission electron microscope (TEM) grids have spacings on the order 100 μm on average; this technique can extend this dimension down to the submicrometre level. With a grid on the order of a few micrometres optical, FIBs, TEMs, scanning electron microscopes (SEMs), and atomic force microscopes (AFM) are able to image the ROI, without special chemical processes or conductive coatings required. To demonstrate, Au nanoparticles of ~ 25 nm in size were placed on a commercial Formvar®- and carbon-coated TEM grid and later milled with a grid pattern. Demonstration of this technique is also extended to bulk glass substrates for the purpose of sample location. This process is explained and demonstrated using all of the aforementioned analytical techniques.
doi_str_mv 10.1111/j.1365-2818.2008.01952.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70474011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70474011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3912-d34ee18cb4359e82cfb509b0dc626fc5a8df0019ba7a3adcdec326416327614c3</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0EgvL4BfCKXcLYzsNdsEAVhaIiFtC15ThjSJVHsVMof49DK9jijT3yuTOaQwhlELNwrpYxE1kacclkzAFkDGyc8nizR0a_H_tkBMB5xHMOR-TY-yUEMpVwSI6YFDIHkY_I01QXrjK6r7qWdpZq-oHOh7JG6teF753ukdrOUVu1ZdW-Uq-bVY2eBr5_Q9rqtmuwR0e90TWekgOra49nu_uELKa3L5P7aP50N5vczCMjxoxHpUgQmTRFItIxSm5skcK4gNJkPLMm1bK0EJYqdK6FLk2JRvAsYZngecYSI07I5bbvynXva_S9aipvsK51i93aqxySPAHGAii3oHGd9w6tWrmq0e5LMVCDTLVUgzM1OFODTPUjU21C9Hw3Y100WP4Fd_YCcL0FPoOur383Vg-Ps-EV8hfbvNWd0q-u8mrxzIGJAEuALBffaD-Mbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70474011</pqid></control><display><type>article</type><title>Fabrication of a versatile substrate for finding samples on the nanometer scale</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><creator>NOWAK, D.B ; VATTIPALLI, M.K ; ABRAMSON, J.J ; SÁNCHEZ, E.J</creator><creatorcontrib>NOWAK, D.B ; VATTIPALLI, M.K ; ABRAMSON, J.J ; SÁNCHEZ, E.J</creatorcontrib><description>With increasing interest in nanometer scale studies, a common research issue is the need to use different analytical systems with a universal substrate to relocate objects on the nanometer scale. Our paper addresses this need. Using the delicate milling capability of a focused ion beam (FIB) system, a region of interest (ROI) on a sample is labelled via a milled reference grid. FIB technology allows for milling and deposition of material at the sub 20-nm level, in a similar user environment as a standard scanning electron microscope (SEM). Presently commercially available transmission electron microscope (TEM) grids have spacings on the order 100 μm on average; this technique can extend this dimension down to the submicrometre level. With a grid on the order of a few micrometres optical, FIBs, TEMs, scanning electron microscopes (SEMs), and atomic force microscopes (AFM) are able to image the ROI, without special chemical processes or conductive coatings required. To demonstrate, Au nanoparticles of ~ 25 nm in size were placed on a commercial Formvar®- and carbon-coated TEM grid and later milled with a grid pattern. Demonstration of this technique is also extended to bulk glass substrates for the purpose of sample location. This process is explained and demonstrated using all of the aforementioned analytical techniques.</description><identifier>ISSN: 0022-2720</identifier><identifier>EISSN: 1365-2818</identifier><identifier>DOI: 10.1111/j.1365-2818.2008.01952.x</identifier><identifier>PMID: 18387037</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Atomic force microscopy instrumentation ; electron microscopes ; ion beam lithography ; near-field scanning optical microscopy ; transmission electron microscopy</subject><ispartof>Journal of microscopy (Oxford), 2008-04, Vol.230 (1), p.32-41</ispartof><rights>2008 The Authors Journal compilation © 2008 The Royal Microscopical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3912-d34ee18cb4359e82cfb509b0dc626fc5a8df0019ba7a3adcdec326416327614c3</citedby><cites>FETCH-LOGICAL-c3912-d34ee18cb4359e82cfb509b0dc626fc5a8df0019ba7a3adcdec326416327614c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2818.2008.01952.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2818.2008.01952.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,1428,27905,27906,45555,45556,46390,46814</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18387037$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>NOWAK, D.B</creatorcontrib><creatorcontrib>VATTIPALLI, M.K</creatorcontrib><creatorcontrib>ABRAMSON, J.J</creatorcontrib><creatorcontrib>SÁNCHEZ, E.J</creatorcontrib><title>Fabrication of a versatile substrate for finding samples on the nanometer scale</title><title>Journal of microscopy (Oxford)</title><addtitle>J Microsc</addtitle><description>With increasing interest in nanometer scale studies, a common research issue is the need to use different analytical systems with a universal substrate to relocate objects on the nanometer scale. Our paper addresses this need. Using the delicate milling capability of a focused ion beam (FIB) system, a region of interest (ROI) on a sample is labelled via a milled reference grid. FIB technology allows for milling and deposition of material at the sub 20-nm level, in a similar user environment as a standard scanning electron microscope (SEM). Presently commercially available transmission electron microscope (TEM) grids have spacings on the order 100 μm on average; this technique can extend this dimension down to the submicrometre level. With a grid on the order of a few micrometres optical, FIBs, TEMs, scanning electron microscopes (SEMs), and atomic force microscopes (AFM) are able to image the ROI, without special chemical processes or conductive coatings required. To demonstrate, Au nanoparticles of ~ 25 nm in size were placed on a commercial Formvar®- and carbon-coated TEM grid and later milled with a grid pattern. Demonstration of this technique is also extended to bulk glass substrates for the purpose of sample location. This process is explained and demonstrated using all of the aforementioned analytical techniques.</description><subject>Atomic force microscopy instrumentation</subject><subject>electron microscopes</subject><subject>ion beam lithography</subject><subject>near-field scanning optical microscopy</subject><subject>transmission electron microscopy</subject><issn>0022-2720</issn><issn>1365-2818</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNkMtOwzAQRS0EgvL4BfCKXcLYzsNdsEAVhaIiFtC15ThjSJVHsVMof49DK9jijT3yuTOaQwhlELNwrpYxE1kacclkzAFkDGyc8nizR0a_H_tkBMB5xHMOR-TY-yUEMpVwSI6YFDIHkY_I01QXrjK6r7qWdpZq-oHOh7JG6teF753ukdrOUVu1ZdW-Uq-bVY2eBr5_Q9rqtmuwR0e90TWekgOra49nu_uELKa3L5P7aP50N5vczCMjxoxHpUgQmTRFItIxSm5skcK4gNJkPLMm1bK0EJYqdK6FLk2JRvAsYZngecYSI07I5bbvynXva_S9aipvsK51i93aqxySPAHGAii3oHGd9w6tWrmq0e5LMVCDTLVUgzM1OFODTPUjU21C9Hw3Y100WP4Fd_YCcL0FPoOur383Vg-Ps-EV8hfbvNWd0q-u8mrxzIGJAEuALBffaD-Mbw</recordid><startdate>200804</startdate><enddate>200804</enddate><creator>NOWAK, D.B</creator><creator>VATTIPALLI, M.K</creator><creator>ABRAMSON, J.J</creator><creator>SÁNCHEZ, E.J</creator><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200804</creationdate><title>Fabrication of a versatile substrate for finding samples on the nanometer scale</title><author>NOWAK, D.B ; VATTIPALLI, M.K ; ABRAMSON, J.J ; SÁNCHEZ, E.J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3912-d34ee18cb4359e82cfb509b0dc626fc5a8df0019ba7a3adcdec326416327614c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Atomic force microscopy instrumentation</topic><topic>electron microscopes</topic><topic>ion beam lithography</topic><topic>near-field scanning optical microscopy</topic><topic>transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>NOWAK, D.B</creatorcontrib><creatorcontrib>VATTIPALLI, M.K</creatorcontrib><creatorcontrib>ABRAMSON, J.J</creatorcontrib><creatorcontrib>SÁNCHEZ, E.J</creatorcontrib><collection>AGRIS</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of microscopy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>NOWAK, D.B</au><au>VATTIPALLI, M.K</au><au>ABRAMSON, J.J</au><au>SÁNCHEZ, E.J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of a versatile substrate for finding samples on the nanometer scale</atitle><jtitle>Journal of microscopy (Oxford)</jtitle><addtitle>J Microsc</addtitle><date>2008-04</date><risdate>2008</risdate><volume>230</volume><issue>1</issue><spage>32</spage><epage>41</epage><pages>32-41</pages><issn>0022-2720</issn><eissn>1365-2818</eissn><abstract>With increasing interest in nanometer scale studies, a common research issue is the need to use different analytical systems with a universal substrate to relocate objects on the nanometer scale. Our paper addresses this need. Using the delicate milling capability of a focused ion beam (FIB) system, a region of interest (ROI) on a sample is labelled via a milled reference grid. FIB technology allows for milling and deposition of material at the sub 20-nm level, in a similar user environment as a standard scanning electron microscope (SEM). Presently commercially available transmission electron microscope (TEM) grids have spacings on the order 100 μm on average; this technique can extend this dimension down to the submicrometre level. With a grid on the order of a few micrometres optical, FIBs, TEMs, scanning electron microscopes (SEMs), and atomic force microscopes (AFM) are able to image the ROI, without special chemical processes or conductive coatings required. To demonstrate, Au nanoparticles of ~ 25 nm in size were placed on a commercial Formvar®- and carbon-coated TEM grid and later milled with a grid pattern. Demonstration of this technique is also extended to bulk glass substrates for the purpose of sample location. This process is explained and demonstrated using all of the aforementioned analytical techniques.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>18387037</pmid><doi>10.1111/j.1365-2818.2008.01952.x</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2720
ispartof Journal of microscopy (Oxford), 2008-04, Vol.230 (1), p.32-41
issn 0022-2720
1365-2818
language eng
recordid cdi_proquest_miscellaneous_70474011
source Wiley Online Library Journals Frontfile Complete; Wiley Free Content
subjects Atomic force microscopy instrumentation
electron microscopes
ion beam lithography
near-field scanning optical microscopy
transmission electron microscopy
title Fabrication of a versatile substrate for finding samples on the nanometer scale
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T04%3A33%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20a%20versatile%20substrate%20for%20finding%20samples%20on%20the%20nanometer%20scale&rft.jtitle=Journal%20of%20microscopy%20(Oxford)&rft.au=NOWAK,%20D.B&rft.date=2008-04&rft.volume=230&rft.issue=1&rft.spage=32&rft.epage=41&rft.pages=32-41&rft.issn=0022-2720&rft.eissn=1365-2818&rft_id=info:doi/10.1111/j.1365-2818.2008.01952.x&rft_dat=%3Cproquest_cross%3E70474011%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70474011&rft_id=info:pmid/18387037&rfr_iscdi=true