Fabrication of a versatile substrate for finding samples on the nanometer scale

With increasing interest in nanometer scale studies, a common research issue is the need to use different analytical systems with a universal substrate to relocate objects on the nanometer scale. Our paper addresses this need. Using the delicate milling capability of a focused ion beam (FIB) system,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of microscopy (Oxford) 2008-04, Vol.230 (1), p.32-41
Hauptverfasser: NOWAK, D.B, VATTIPALLI, M.K, ABRAMSON, J.J, SÁNCHEZ, E.J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With increasing interest in nanometer scale studies, a common research issue is the need to use different analytical systems with a universal substrate to relocate objects on the nanometer scale. Our paper addresses this need. Using the delicate milling capability of a focused ion beam (FIB) system, a region of interest (ROI) on a sample is labelled via a milled reference grid. FIB technology allows for milling and deposition of material at the sub 20-nm level, in a similar user environment as a standard scanning electron microscope (SEM). Presently commercially available transmission electron microscope (TEM) grids have spacings on the order 100 μm on average; this technique can extend this dimension down to the submicrometre level. With a grid on the order of a few micrometres optical, FIBs, TEMs, scanning electron microscopes (SEMs), and atomic force microscopes (AFM) are able to image the ROI, without special chemical processes or conductive coatings required. To demonstrate, Au nanoparticles of ~ 25 nm in size were placed on a commercial Formvar®- and carbon-coated TEM grid and later milled with a grid pattern. Demonstration of this technique is also extended to bulk glass substrates for the purpose of sample location. This process is explained and demonstrated using all of the aforementioned analytical techniques.
ISSN:0022-2720
1365-2818
DOI:10.1111/j.1365-2818.2008.01952.x