Homoplasy, homology, and the perceived special status of behavior in evolution

Evolutionary biologists tend to tread cautiously when considering how behavioral data might be incorporated into phylogenetic analyses, largely because of the preconception that behavior somehow constitutes a “special” set of characters that may be inherently more prone to homoplasy or subject to di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of human evolution 2007-05, Vol.52 (5), p.504-521
Hauptverfasser: Rendall, Drew, Di Fiore, Anthony
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Evolutionary biologists tend to tread cautiously when considering how behavioral data might be incorporated into phylogenetic analyses, largely because of the preconception that behavior somehow constitutes a “special” set of characters that may be inherently more prone to homoplasy or subject to different selection regimes than those that operate on the morphological or genetic traits traditionally used in phylogenetic reconstruction. In this review, we first consider how the evolution of behavior has been treated historically, paying particular attention to why phylogenetic reconstruction has often failed to include behavioral traits. We then discuss, from a theoretical perspective, what reasons there are—if any—for assuming that behavioral traits should be more prone to homoplasy than other types of traits. In doing so, we review several empirical studies that tackle this issue head-on. Finally, we examine how behavioral features have been used to good effect in phylogenetic reconstruction. Our conclusion is that there seems to be little justification on theoretical grounds for assuming that behavior is in any way “special”—either particularly labile or particularly prone to exhibit high levels of homoplasy. Additionally, in reviewing historical perceptions of behavior and their links to conceptions of homology, we conclude that there is no compelling reason why behavior cannot be homologized or therefore why it should not prove phylogenetically informative. In subsequently considering several factors related to selection that influence the likelihood of homoplasy occurring in any trait system, we also found no clear trend predicting homoplasy disproportionately in behavioral systems. In fact, where studied, the degree of homoplasy seen in behavioral traits is comparable to that seen in other trait systems. Ultimately, there appear to be no grounds for dismissing behavior a priori from the class of phylogenetically informative characters.
ISSN:0047-2484
1095-8606
DOI:10.1016/j.jhevol.2006.11.014