Exceptional Self-Penetrating Networks Containing Unprecedented Quintuple-Stranded Molecular Braid, 9-Fold Meso Helices, and 17-Fold Interwoven Helices
Self-assembly of long V-shaped ligands and d10 metal salts in the presence of a linear bidentate ligand affords two unprecedented self-penetrating coordination networks {[Zn4(bptc)2(bpy)4]·(C5H3N)·4H2O} n (1) and {[Cd2(sdba)2(bpy)(H2O)2]·2H2O} n (2) (bptc = 3,3‘,4,4‘-benzophenonetetracarboxylate, sd...
Gespeichert in:
Veröffentlicht in: | Inorganic chemistry 2007-05, Vol.46 (10), p.4158-4166 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Self-assembly of long V-shaped ligands and d10 metal salts in the presence of a linear bidentate ligand affords two unprecedented self-penetrating coordination networks {[Zn4(bptc)2(bpy)4]·(C5H3N)·4H2O} n (1) and {[Cd2(sdba)2(bpy)(H2O)2]·2H2O} n (2) (bptc = 3,3‘,4,4‘-benzophenonetetracarboxylate, sdba = 4,4‘-sulfonyldibenzoate, bpy = 4,4‘-bipyridine). Their structures were determined by single-crystal X-ray diffraction analyses and further characterized by elemental analyses, IR spectra, X-ray powder diffraction, and TG analyses. 1 adopts a novel 3D framework containing three types of molecular braids, among which the quintuple-stranded molecular braid represents the highest-stranded molecular braid presently known for entangled systems. 2 is an uncommon self-penetrating 2D network containing pseudo-Borromean links and double-stranded helices. More interestingly, when the strong hydrogen bonds between layers are taken into account, the resulting net of 2 becomes an eight-connected 3D self-penetrating network with an unprecedented (421.67) topology, which represents the highest connected topology presently known in self-penetrating systems. Furthermore, the photoluminescent properties of 1 and 2 were studied. |
---|---|
ISSN: | 0020-1669 1520-510X |
DOI: | 10.1021/ic070054a |