Preferential recognition of a microbial metabolite by human Vgamma2Vdelta2 T cells

Human Vgamma2Vdelta2 T cells are stimulated by prenyl pyrophosphates, such as isopentenyl pyrophosphate (IPP), and play important roles in mediating immunity against microbial pathogens and have potent anti-tumor activity. (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP) has been identified a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International immunology 2007-05, Vol.19 (5), p.657-673
Hauptverfasser: Puan, Kia-Joo, Jin, Chenggang, Wang, Hong, Sarikonda, Ghanashyam, Raker, Amy M, Lee, Hoi K, Samuelson, Megan I, Märker-Hermann, Elisabeth, Pasa-Tolic, Ljiljana, Nieves, Edward, Giner, José-Luis, Kuzuyama, Tomohisa, Morita, Craig T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Human Vgamma2Vdelta2 T cells are stimulated by prenyl pyrophosphates, such as isopentenyl pyrophosphate (IPP), and play important roles in mediating immunity against microbial pathogens and have potent anti-tumor activity. (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP) has been identified as a metabolite in the 2-C-methyl-D-erythritol-4 phosphate (MEP) pathway for isoprenoid biosynthesis that is used by many bacteria and protozoan parasites. We find that HMBPP is the major Vgamma2Vdelta2 T-cell antigen for many bacteria, including Mycobacterium tuberculosis, Yersinia enterocolitica and Escherichia coli. HMBPP was a 30 000-fold more potent antigen than IPP. Using mutant bacteria, we show that bacterial antigen levels for Vgamma2Vdelta2 T cells are controlled by MEP pathway enzymes and find no evidence for the production of 3-formyl-1-butyl pyrophosphate. Moreover, HMBPP reactivity required only germ line-encoded Vgamma2Vdelta2 TCR elements and is present at birth. Importantly, we show that bacterial HMBPP levels correlated with their ability to expand Vgamma2Vdelta2 T cells in vivo upon engraftment into severe combined immunodeficiency-beige mice. Thus, the production of HMBPP by a microbial-specific isoprenoid pathway plays a major role in determining whether bacteria will stimulate Vgamma2Vdelta2 T cells in vivo. This preferential stimulation by a common microbial isoprenoid metabolite allows Vgamma2Vdelta2 T cells to respond to a broad array of pathogens using this pathway.
ISSN:0953-8178