Artificial G-Wire Switch with 2,2‘-Bipyridine Units Responsive to Divalent Metal Ions
Development of a guanine nanowire (G-wire) that is controllable and can be switched by external signals is important for the creation of molecular electronic technologies. Here, we constructed a G-wire in which the thymines of the main chain of d(G4T4G4) were replaced with 2,2‘-bipyridine units, whi...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2007-05, Vol.129 (18), p.5919-5925 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Development of a guanine nanowire (G-wire) that is controllable and can be switched by external signals is important for the creation of molecular electronic technologies. Here, we constructed a G-wire in which the thymines of the main chain of d(G4T4G4) were replaced with 2,2‘-bipyridine units, which have two aromatic rings that rotate arbitrarily upon coordination with metal ions. Circular dichroism of the DNA oligonucleotides with or without the 2,2‘-bipyridine unit showed that divalent metal ions induce the bipyridine-containing oligonucleotide to switch from an antiparallel to a parallel G-quadruplex. Native polyacrylamide gel electrophoresis showed that the parallel-stranded G-quadruplex DNA had a high-order structure. Circular dichroism and native gel electrophoresis analyses suggested that adding Na2EDTA causes a reverse structural transition from a parallel-stranded high-order structure to an antiparallel G-quadruplex. Moreover, atomic force microscopy showed a long nanowire (∼200 nm) in the presence of Ni2+ but no significant image in the absence of Ni2+ or in the presence of both Ni2+ and Na2EDTA. These observations revealed that the parallel-stranded high-order structure is a G-wire containing numerous DNA oligonucleotide strands bound together via divalent metal ion−2,2‘-bipyridine complexes. Finally, we found that alternating addition of Ni2+ and Na2EDTA can cycle the G-wire between the high-order and disorganized structures, with an average cycling efficiency of 0.95 (i.e., 5% loss per cycle). These results demonstrate that a DNA oligonucleotide incorporating the 2,2‘-bipyridine unit acts as a G-wire switch that can be controlled by chemical input signals, namely, divalent metal ions. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja068707u |