Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima

Cakile maritima is a local oilseed halophyte exhibiting potential for secondary metabolite production. In the present study, plant growth, leaf polyphenol content and antioxidant activity were comparatively analyzed in two C. maritima Tunisian accessions (Jerba and Tabarka, respectively sampled from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry 2007-03, Vol.45 (3), p.244-249
Hauptverfasser: Ksouri, Riadh, Megdiche, Wided, Debez, Ahmed, Falleh, Hanen, Grignon, Claude, Abdelly, Chedly
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cakile maritima is a local oilseed halophyte exhibiting potential for secondary metabolite production. In the present study, plant growth, leaf polyphenol content and antioxidant activity were comparatively analyzed in two C. maritima Tunisian accessions (Jerba and Tabarka, respectively sampled from arid and humid bioclimatic stages) under salt constraint. Three-week-old plants were subjected to 0, 100, and 400 mM NaCl for 28 days under glasshouse conditions. A significant variability in salt response was found between both accessions: while Tabarka growth (shoot biomass, leaf expansion) was significantly restricted at 100 and 400 mM NaCl, compared to the control, Jerba growth increased at 100 mM before declining at 400 mM NaCl. The better behaviour of Jerba salt-challenged plants, compared to those of Tabarka, may be related to their higher polyphenol content (1.56- and 1.3-fold the control, at 100 and 400 mM NaCl respectively) and antioxidant activity (smaller IC 50 values for both 1,1-diphenyl-2-picrylhydrazyl and superoxide scavenging), associated with lower leaf MDA accumulation (ca. −66% of the control at 100 mM NaCl). Taken together, our findings suggest that halophytes may be interesting for production of antioxidant compounds, and that the accession-dependent capacity to induce antioxidative mechanisms in response to salt, may result in a corresponding variability for growth sustainability.
ISSN:0981-9428
1873-2690
DOI:10.1016/j.plaphy.2007.02.001