Model based design of a microfluidic mixer driven by induced charge electroosmosis
Mixing chemical or biological samples with reagents for chemical analysis is one of the most time consuming operations on microfluidic platforms. This is primarily due to the low rate of diffusive transport in liquid systems. Additionally, much research has focused on detection, rather than sample p...
Gespeichert in:
Veröffentlicht in: | Lab on a chip 2008-01, Vol.8 (4), p.565-572 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mixing chemical or biological samples with reagents for chemical analysis is one of the most time consuming operations on microfluidic platforms. This is primarily due to the low rate of diffusive transport in liquid systems. Additionally, much research has focused on detection, rather than sample preparation. In response, we describe a mixer for microfluidic sample preparation based on the electrokinetic phenomenon of induced-charge-electroosmosis (ICEO). ICEO creates microvortices within a fluidic channel by application of alternating current (AC) electric fields. The microvortices are driven by electrostatic forces acting on the ionic charge induced by the field near polarizable materials. By enabling mixing to be turned on or off within a channel of fixed volume, these electronically controlled mixers prevent sample dilution-a common problem with other strategies. A three-dimensional model based on the finite volume method was developed to calculate the electric field, fluid flow, and mass transport in a multi-species liquid. After preliminary experiments, the model was used to rapidly prototype a wide range of designs. A new microfabrication process was developed for devices with vertical sidewalls having conductive metal coatings and embedded electrodes. Mixing experiments were carried out in the devices and the results were compared to the model. |
---|---|
ISSN: | 1473-0197 1473-0189 |
DOI: | 10.1039/b717416k |