Effect of a Novel Ascorbic Derivative, Disodium Isostearyl 2-O-L-Ascorbyl Phosphate on Human Dermal Fibroblasts: Increased Collagen Synthesis and Inhibition of MMP-1

The effects of a novel amphiphilic vitamin C derivative, disodium isostearyl 2-O-L-ascorbyl phosphate (disodium 2-(1,3,3-trimethyl-n-butyl)-5,7,7-trimethyl-n-octyl-L-ascorbyl phosphate, VCP-IS-2Na), possessing a C18 alkyl chain attached to a stable sodium L-ascorbic acid 2-phosphate (VCP-Na), on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biological & Pharmaceutical Bulletin 2008/04/01, Vol.31(4), pp.563-568
Hauptverfasser: Shibayama, Hiroharu, Hisama, Masayoshi, Matsuda, Sanae, Ohtsuki, Mamitaro, Iwaki, Masahiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effects of a novel amphiphilic vitamin C derivative, disodium isostearyl 2-O-L-ascorbyl phosphate (disodium 2-(1,3,3-trimethyl-n-butyl)-5,7,7-trimethyl-n-octyl-L-ascorbyl phosphate, VCP-IS-2Na), possessing a C18 alkyl chain attached to a stable sodium L-ascorbic acid 2-phosphate (VCP-Na), on the proliferation of fibroblasts and collagen synthesis, and inhibition of matrix metalloproteinase-1 (MMP-1) in normal human fibroblasts, NHDFs and NB1RGBs, were evaluated. Compared with proliferation of non-treated fibroblasts, VCP-IS-2Na at 50 μM increased proliferation to 123 and 135% of that in NHDFs and NB1RGBs. On the other hand, L-ascorbic acid (vitamin C) and VCP-Na had little effect on proliferation. At a concentration of 5.0—50 μM, VCP-IS-2Na stimulated collagen synthesis with an effectiveness comparable to that of vitamin C and VCP-Na. The amount of type I collagen in the culture medium was increased by treatment with VCP-IS-2Na for 72 h, in a concentration-dependent manner. Maximum increases of 126 and 1067% were seen with VCP-IS-2Na at 50 μM in NHDFs and NB1RGBs, respectively, whereas vitamin C and VCP-Na only had a small effect. VCP-IS-2Na had a small inhibitory effect on MMP-1, but vitamin C did not inhibit MMP-1, and VCP-Na had very little effect. VCP-IS-2Na exerted its collagen synthesis-promoting activity after being converted to vitamin C by phosphatase. This vitamin C promoted proliferation, collagen synthesis and inhibition of MMP-1, which are prolonged through sustained conversion of VCP-IS-2Na.
ISSN:0918-6158
1347-5215
DOI:10.1248/bpb.31.563