Histone deacetylase inhibitors: biology and mechanism of action

Histone deacetylases (HDACs) and histone acetyltransferases are enzymes that regulate chromatin structure and function through the removal and addition, respectively, of the acetyl group from the lysine residues of core nucleosomal histones. This posttranslational modification of histones is an impo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The cancer journal (Sudbury, Mass.) Mass.), 2007-01, Vol.13 (1), p.23-29
Hauptverfasser: Mehnert, Janice M, Kelly, Wm Kevin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Histone deacetylases (HDACs) and histone acetyltransferases are enzymes that regulate chromatin structure and function through the removal and addition, respectively, of the acetyl group from the lysine residues of core nucleosomal histones. This posttranslational modification of histones is an important process in the regulation of gene expression. Aberrant expression and recruitment and disrupted activities of HDACs and histone acetyltransferases have been found in malignant tissues, implicating their involvement in cancer. HDAC inhibitors (HDACIs) function through diverse mechanisms, including the promotion of cell cycle arrest and apoptosis and the inhibition of angiogenesis. Malignant cells appear more sensitive to the proapoptotic effects of HDACIs, underscoring the therapeutic potential of these agents. Multiple HDACIs are currently under investigation in clinical trials, including vorinostat (suberoylanilide hydroxamic acid), which was recently approved by the U.S. Food and Drug Administration for the treatment of cutaneous manifestations of cutaneous T-cell lymphoma in patients with progressive, persistent, or recurrent disease on or after 2 systemic therapies.
ISSN:1528-9117
1540-336X
DOI:10.1097/ppo.0b013e31803c72ba