Aldosterone Nongenomically Produces NADPH Oxidase-Dependent Reactive Oxygen Species and Induces Myocyte Apoptosis
The roles of aldosterone in the progression of heart failure have not been fully elucidated. This study examined whether aldosterone nongenomically activates reactive oxygen species (ROS) production, causing myocyte apoptosis. Addition of aldosterone to neonatal rat cardiac myocytes caused the activ...
Gespeichert in:
Veröffentlicht in: | Hypertension research 2008-02, Vol.31 (2), p.363-375 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The roles of aldosterone in the progression of heart failure have not been fully elucidated. This study examined whether aldosterone nongenomically activates reactive oxygen species (ROS) production, causing myocyte apoptosis. Addition of aldosterone to neonatal rat cardiac myocytes caused the activation of NADPH oxidase and intracellular ROS production in a dose-dependent manner (10-(9)-10(-7) mol/L). NADPH oxidase activation was evident as soon as 5 min after aldosterone treatment. Neither an inhibitor for nuclear transcription (actinomycin D) nor an inhibitor of new protein synthesis (cycloheximide) blocked this rapid activation, and specific binding of aldosterone to plasma membrane fraction was inhibited by eplerenone, suggesting a nongenomic mechanism. Aldosterone did not affect the mRNA or protein levels of NOX2, which is a major subunit of NADPH oxidase in myocytes, after 48 h. Nuclear staining with DAPI showed that aldosterone (10(-7) mol/L) increased the myocyte apoptosis (2.3 fold, p |
---|---|
ISSN: | 0916-9636 1348-4214 |
DOI: | 10.1291/hypres.31.363 |