The small GTPase Ral mediates SDF-1–induced migration of B cells and multiple myeloma cells
Chemokine-controlled migration plays a critical role in B-cell development, differentiation, and function, as well as in the pathogenesis of B-cell malignancies, including the plasma cell neoplasm multiple myeloma (MM). Here, we demonstrate that stimulation of B cells and MM cells with the chemokine...
Gespeichert in:
Veröffentlicht in: | Blood 2008-04, Vol.111 (7), p.3364-3372 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Chemokine-controlled migration plays a critical role in B-cell development, differentiation, and function, as well as in the pathogenesis of B-cell malignancies, including the plasma cell neoplasm multiple myeloma (MM). Here, we demonstrate that stimulation of B cells and MM cells with the chemokine stromal cell–derived factor-1 (SDF-1) induces strong migration and activation of the Ras-like GTPase Ral. Inhibition of Ral, by expression of the dominant negative RalN28 mutant or of RalBPΔGAP, a Ral effector mutant that sequesters active Ral, results in impaired SDF-1–induced migration of B cells and MM cells. Of the 2 Ral isoforms, RalA and RalB, RalB was found to mediate SDF-1–induced migration. We have recently shown that Btk, PLCγ2, and Lyn/Syk mediate SDF-1–controlled B-cell migration; however, SDF-1–induced Ral activation is not affected in B cells deficient in these proteins. In addition, treatment with pharmacological inhibitors against PI3K and PLC or expression of dominant-negative Ras did not impair SDF-1–induced Ral activation. Taken together, these results reveal a novel function for Ral, that is, regulation of SDF-1–induced migration of B cells and MM cells, thereby providing new insights into the control of B-cell homeostasis, trafficking, and function, as well as into the pathogenesis of MM. |
---|---|
ISSN: | 0006-4971 1528-0020 |
DOI: | 10.1182/blood-2007-08-106583 |