Is Visfatin an Adipokine or Myokine? Evidence for Greater Visfatin Expression in Skeletal Muscle than Visceral Fat in Chickens

Visfatin, an adipokine hormone produced primarily by visceral adipose tissue in mammals, has been implicated in the immune system, cellular aging, and glucose metabolism. Increased visceral adiposity and hyperglycemia have been correlated with elevated plasma visfatin levels in humans. The present s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Endocrinology (Philadelphia) 2008-04, Vol.149 (4), p.1543-1550
Hauptverfasser: Krzysik-Walker, Susan M, Ocón-Grove, Olga M, Maddineni, Sreenivasa R, Hendricks, Gilbert L, Ramachandran, Ramesh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Visfatin, an adipokine hormone produced primarily by visceral adipose tissue in mammals, has been implicated in the immune system, cellular aging, and glucose metabolism. Increased visceral adiposity and hyperglycemia have been correlated with elevated plasma visfatin levels in humans. The present study investigated visfatin cDNA and protein expression as well as plasma visfatin levels in chickens that are selected for rapid growth and are naturally hyperglycemic relative to mammals. By RT-PCR, we detected visfatin cDNA in multiple tissues in the chicken. The deduced amino acid sequence of full-length chicken visfatin was 92–93% homologous to mammalian visfatin. Using real-time quantitative PCR and Western blotting, chicken skeletal muscle was found to contain 5- and 3-fold greater quantities of visfatin mRNA and protein than abdominal fat pad, respectively. Visfatin mRNA and protein quantities were not significantly different among sc and visceral adipose tissue depots. Skeletal muscle visfatin mRNA and protein quantities as well as plasma visfatin levels determined by enzyme immunoassay were significantly higher in 8-wk-old compared with 4-wk-old chickens, possibly due to rapid skeletal muscle growth and visceral fat accretion occurring in broiler chickens during this period. However, fasting and refeeding did not affect plasma visfatin levels in the chicken. Collectively, our results provide novel evidence that skeletal muscle, not the visceral adipose tissue, is the primary source of visfatin in chickens, thereby raising the possibility that visfatin may be acting as a myokine affecting skeletal muscle growth and metabolism.
ISSN:0013-7227
1945-7170
DOI:10.1210/en.2007-1301