Improved efficiency of focal point conformational analysis with truncated correlation consistent basis sets

It has been suggested that the computational cost of correlated ab initio calculations could be reduced efficiently by using truncated basis sets on hydrogen atoms (Mintz et al., J Chem Phys 2004, 121, 5629). We now explore this proposal in the context of conformational analysis of small molecules,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry 2008-04, Vol.29 (6), p.900-911
Hauptverfasser: Kahn, Kalju, Kahn, Iiris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It has been suggested that the computational cost of correlated ab initio calculations could be reduced efficiently by using truncated basis sets on hydrogen atoms (Mintz et al., J Chem Phys 2004, 121, 5629). We now explore this proposal in the context of conformational analysis of small molecules, such as hydrogen peroxide, dimethyl ether, ethyl methyl ether, formic acid, methyl formate, and several small alcohols. It is found that truncated correlation consistent basis sets that lack certain higher angular momentum functions on hydrogen atoms offer accuracy similar to traditional Dunning's basis sets for conformational analysis. Combination of such basis sets with the basis set extrapolation technique to estimate Hartree-Fock and Møller-Plesset second order energies provides composite extrapolation model chemistries that are significantly more accurate and faster than analogous single point calculations with traditional correlation consistent basis sets. Root mean square errors of best composite extrapolation model chemistries on the used set of molecules are within 0.03 kcal/mol of traditional focal point conformational energies. The applicability of composite extrapolation methods is illustrated by performing conformational analysis of tert-butanol and cyclohexanol. For comparison, conformational energies calculated with popular molecular mechanics force fields are also given.
ISSN:0192-8651
1096-987X
DOI:10.1002/jcc.20848