PET versus SPECT: strengths, limitations and challenges

The recent introduction of high-resolution molecular imaging technology is considered by many experts as a major breakthrough that will potentially lead to a revolutionary paradigm shift in health care and revolutionize clinical practice. This paper intends to balance the capabilities of the two maj...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear medicine communications 2008-03, Vol.29 (3), p.193-207
Hauptverfasser: Rahmim, Arman, Zaidi, Habib
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The recent introduction of high-resolution molecular imaging technology is considered by many experts as a major breakthrough that will potentially lead to a revolutionary paradigm shift in health care and revolutionize clinical practice. This paper intends to balance the capabilities of the two major molecular imaging modalities used in nuclear medicine, namely positron emission tomography (PET) and single photon emission computed tomography (SPECT). The motivations are many-fold(1) to gain a better understanding of the strengths and limitations of the two imaging modalities in the context of recent and ongoing developments in hardware and software design; (2) to emphasize that certain issues, historically and commonly thought as limitations of one technology, may now instead be viewed as challenges that can be addressed; (3) to point out that current state of the art PET and SPECT scanners can (greatly) benefit from improvements in innovative image reconstruction algorithms; and (4) to identify important areas of research in PET and SPECT imaging that will be instrumental to further improvements in the two modalities. Both technologies are poised to advance molecular imaging and have a direct impact on clinical and research practice to influence the future of molecular medicine.
ISSN:0143-3636
DOI:10.1097/MNM.0b013e3282f3a515