Hexavalent Molybdenum Reduction to Molybdenum Blue by S. Marcescens Strain Dr. Y6

A molybdate-reducing bacterium has been locally isolated. The bacterium reduces molybdate or Mo6+ to molybdenum blue (molybdate oxidation states of between 5+ and 6+). Different carbon sources such as acetate, formate, glycerol, citric acid, lactose, fructose, glucose, mannitol, tartarate, maltose,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied biochemistry and biotechnology 2008-04, Vol.149 (1), p.33-43
Hauptverfasser: Shukor, M.Y, Habib, S.H.M, Jirangon, H, Abdullah, M.P.A, Shamaan, N.A, Syed, M.A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A molybdate-reducing bacterium has been locally isolated. The bacterium reduces molybdate or Mo6+ to molybdenum blue (molybdate oxidation states of between 5+ and 6+). Different carbon sources such as acetate, formate, glycerol, citric acid, lactose, fructose, glucose, mannitol, tartarate, maltose, sucrose, and starch were used at an initial concentration of 0.2% (w/v) in low phosphate media to study their effect on the molybdate reduction efficiency of bacterium. All of the carbon sources supported cellular growth, but only sucrose, maltose, glucose, and glycerol (in decreasing order) supported molybdate reduction after 24 h of incubation. Optimum concentration of sucrose for molybdate reduction is 1.0% (w/v) after 24 h of static incubation. Ammonium sulfate, ammonium chloride, valine, OH-proline, glutamic acid, and alanine (in the order of decreasing efficiency) supported molybdate reduction with ammonium sulfate giving the highest amount of molybdenum blue after 24 h of incubation at 0.3% (w/v). The optimum molybdate concentration that supports molybdate reduction is between 15 and 25 mM. Molybdate reduction is optimum at 35 °C. Phosphate at concentrations higher than 5 mM strongly inhibits molybdate reduction. The molybdenum blue produced from cellular reduction exhibits a unique absorption spectrum with a maximum peak at 865 nm and a shoulder at 700 nm. The isolate was tentatively identified as Serratia marcescens Strain Dr.Y6 based on carbon utilization profiles using Biolog GN plates and partial 16s rDNA molecular phylogeny.
ISSN:0273-2289
1559-0291
DOI:10.1007/s12010-008-8137-z