Nucleotide Frequencies in Human Genome and Fibonacci Numbers
This work presents a mathematical model that establishes an interesting connection between nucleotide frequencies in human single-stranded DNA and the famous Fibonacci’s numbers. The model relies on two assumptions. First, Chargaff’s second parity rule should be valid, and second, the nucleotide fre...
Gespeichert in:
Veröffentlicht in: | Bulletin of mathematical biology 2008-04, Vol.70 (3), p.643-653 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work presents a mathematical model that establishes an interesting connection between nucleotide frequencies in human single-stranded DNA and the famous Fibonacci’s numbers. The model relies on two assumptions. First, Chargaff’s second parity rule should be valid, and second, the nucleotide frequencies should approach limit values when the number of bases is sufficiently large. Under these two hypotheses, it is possible to predict the human nucleotide frequencies with accuracy. This result may be used as evidence to the Fibonacci string model that was proposed to the sequence growth of DNA repetitive sequences. It is noteworthy that the predicted values are solutions of an optimization problem, which is commonplace in many of nature’s phenomena. |
---|---|
ISSN: | 0092-8240 1522-9602 |
DOI: | 10.1007/s11538-007-9261-6 |