Seizure activity in the rat hippocampus, perirhinal and prefrontal cortex associated with transient global cerebral ischemia

Epileptiform EEG activity associated with ischemia can contribute to early damage of hippocampal neurons, and seizure activity may also lead to dysfunction in extrahippocampal regions. In this study, seizure activity associated with the four-vessel occlusion model of cerebral ischemia was monitored...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Neural Transmission 2008-03, Vol.115 (3), p.401-411
Hauptverfasser: Caruana, D. A., Nesbitt, C., Mumby, D. G., Chapman, C. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Epileptiform EEG activity associated with ischemia can contribute to early damage of hippocampal neurons, and seizure activity may also lead to dysfunction in extrahippocampal regions. In this study, seizure activity associated with the four-vessel occlusion model of cerebral ischemia was monitored using chronically implanted electrodes in the CA1/subicular region, the perirhinal cortex, and the prefrontal cortex of the rat. Background EEG amplitude was reduced in all recording sites during occlusion, but spiking and bursting activity was also observed. Seizure activity occurred in most animals during the first several hours of reperfusion, but was not observed on subsequent days. Epileptiform spikes and bursts were often synchronous between two or three recording sites, and spikes in the CA1 region also often occurred just prior to spikes in other sites. These results demonstrate that the four-vessel occlusion model can lead to patterns of seizure activity in the hippocampus, prefrontal and perirhinal cortices.
ISSN:0300-9564
1435-1463
DOI:10.1007/s00702-007-0847-9