Selective elimination of aphid endosymbionts: effects of antibiotic dose and host genotype, and fitness consequences

Multiple endosymbionts commonly coexist in the same host insects. In order to gain an understanding of the biological roles of the individual symbionts in such complex systems, experimental techniques for enabling the selective removal of a specific symbiont from the host are of great importance. By...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:FEMS microbiology ecology 2007-05, Vol.60 (2), p.229-239
Hauptverfasser: Koga, Ryuichi, Tsuchida, Tsutomu, Sakurai, Makiko, Fukatsu, Takema
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multiple endosymbionts commonly coexist in the same host insects. In order to gain an understanding of the biological roles of the individual symbionts in such complex systems, experimental techniques for enabling the selective removal of a specific symbiont from the host are of great importance. By using the pea aphid-Buchnera-Serratia endosymbiotic system as a model, the efficacy, generality, and fitness consequences of selective elimination techniques at various antibiotic doses and under a variety of host genotypes were investigated. In all the disymbiotic aphid strains examined, the facultative symbiont Serratia was selectively eliminated by ampicillin treatment in a dose-dependent manner, suggesting a generality of the elimination technique irrespective of host genotype. However, fitness consequences of the Serratia elimination differed between the aphid strains, indicating substantial effects of host genotype. In all the disymbiotic aphid strains, the obligate symbiont Buchnera was selectively eliminated by rifampicin treatment irrespective of the antibiotic dose. However, the survival and reproduction of the Buchnera-free aphids varied in a dose-dependent manner, and the dose dependence was strikingly different between the aphid genotypes. These results provide a basis for the development of new protocols for manipulating insect endosymbiotic microbiota.
ISSN:0168-6496
1574-6941
DOI:10.1111/j.1574-6941.2007.00284.x