HMX based enhanced energy LOVA gun propellant

Efforts to develop gun propellants with low vulnerability have recently been focused on enhancing the energy with a further improvement in its sensitivity characteristics. These propellants not only prevent catastrophic disasters due to unplanned initiation of currently used gun propellants (based o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2007-05, Vol.143 (1), p.532-534
Hauptverfasser: Sanghavi, R.R., Kamale, P.J., Shaikh, M.A.R., Shelar, S.D., Kumar, K. Sunil, Singh, Amarjit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Efforts to develop gun propellants with low vulnerability have recently been focused on enhancing the energy with a further improvement in its sensitivity characteristics. These propellants not only prevent catastrophic disasters due to unplanned initiation of currently used gun propellants (based on nitrate esters) but also realize enhanced energy levels to increase the muzzle velocity of the projectiles. Now, in order to replace nitroglycerine, which is highly sensitive to friction and impact, nitramines meet the requirements as they offer superior energy due to positive heat of formation, typical stoichiometry with higher decomposition temperatures and also owing to negative oxygen balance are less sensitive than stoichiometrically balanced NG. RDX has been widely reported for use in LOVA propellant. In this paper we have made an effort to present the work on scantily reported nitramine HMX based LOVA gun propellant while incorporating energetic plasticizer glycidyl azide polymer to enhance the energy level. HMX is known to be thermally stable at higher temperature than RDX and also proved to be less vulnerable to small scale shaped charge jet attack as its decomposition temperature is 270 °C. HMX also offers improved impulse due to its superior heat of formation (+17 kcal/mol) as compared to RDX (+14 kcal/mol). It has also been reported that a break point will not appear until 35,000 psi for propellant comprising of 5 μm HMX. Since no work has been reported in open literature regarding replacement of RDX by HMX, the present studies were carried out.
ISSN:0304-3894
1873-3336
DOI:10.1016/j.jhazmat.2006.09.087