Modelling SF-6D health state preference data using a nonparametric Bayesian method

This paper reports on the findings from applying a new approach to modelling health state valuation data. The approach applies a nonparametric model to estimate SF-6D health state utility values using Bayesian methods. The data set is the UK SF-6D valuation study where a sample of 249 states defined...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of health economics 2007-05, Vol.26 (3), p.597-612
Hauptverfasser: Kharroubi, Samer A., Brazier, John E., Roberts, Jennifer, O’Hagan, Anthony
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper reports on the findings from applying a new approach to modelling health state valuation data. The approach applies a nonparametric model to estimate SF-6D health state utility values using Bayesian methods. The data set is the UK SF-6D valuation study where a sample of 249 states defined by the SF-6D (a derivative of the SF-36) was valued by a representative sample of the UK general population using standard gamble. The paper presents the results from applying the nonparametric model and comparing it to the original model estimated using a conventional parametric random effects model. The two models are compared theoretically and in terms of empirical performance. The paper discusses the implications of these results for future applications of the SF-6D and further work in this field.
ISSN:0167-6296
1879-1646
DOI:10.1016/j.jhealeco.2006.09.002