PAWP, a Sperm-specific WW Domain-binding Protein, Promotes Meiotic Resumption and Pronuclear Development during Fertilization
We report a novel alkaline extractable protein of the sperm head that exclusively resides in the post-acrosomal sheath region of the perinuclear theca (PT) and is expressed and assembled in elongating spermatids. It is a protein that shares sequence homology to the N-terminal half of WW domain-bindi...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2007-04, Vol.282 (16), p.12164-12175 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report a novel alkaline extractable protein of the sperm head that exclusively resides in the post-acrosomal sheath region of the perinuclear theca (PT) and is expressed and assembled in elongating spermatids. It is a protein that shares sequence homology to the N-terminal half of WW domain-binding protein 2, while the C-terminal half is unique and rich in proline. A functional PPXY consensus binding site for group-I WW domain-containing proteins, and numerous unique repeating motifs, YGXPPXG, are identified in the proline-rich region. Considering these molecular characteristics, we designated this protein PAWP for postacrosomal sheath WW domain-binding protein. Microinjection of recombinant PAWP or alkaline PT extract into metaphase II-arrested porcine, bovine, macaque, and Xenopus oocytes induced a high rate of pronuclear formation, which was prevented by co-injection of a competitive PPXY motif containing peptide derived from PAWP but not by co-injection of the point-mutated peptide. Intracytoplasmic sperm injection (ICSI) of porcine oocytes combined with co-injection of the competitive PPXY peptide or an anti-recombinant PAWP antiserum prevented pronuclear formation and arrested fertilization. Conversely, co-injection of the modified PPXY peptide, when the tyrosine residue of PPXY was either phosphorylated or substituted with phenylalanine, did not prevent ICSI-induced fertilization. This study uncovers a group I WW domain module signal transduction event within the fertilized egg that appears compulsory for meiotic resumption and pronuclear development during egg activation and provides compelling evidence that a PPXY motif of sperm-contributed PAWP can trigger these events. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M609132200 |