Detection of prodromal Alzheimer's disease via pattern classification of magnetic resonance imaging

Abstract We report evidence that computer-based high-dimensional pattern classification of magnetic resonance imaging (MRI) detects patterns of brain structure characterizing mild cognitive impairment (MCI), often a prodromal phase of Alzheimer's disease (AD). Ninety percent diagnostic accuracy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurobiology of aging 2008-04, Vol.29 (4), p.514-523
Hauptverfasser: Davatzikos, Christos, Fan, Yong, Wu, Xiaoying, Shen, Dinggang, Resnick, Susan M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract We report evidence that computer-based high-dimensional pattern classification of magnetic resonance imaging (MRI) detects patterns of brain structure characterizing mild cognitive impairment (MCI), often a prodromal phase of Alzheimer's disease (AD). Ninety percent diagnostic accuracy was achieved, using cross-validation, for 30 participants in the Baltimore Longitudinal Study of Aging. Retrospective evaluation of serial scans obtained during prior years revealed gradual increases in structural abnormality for the MCI group, often before clinical symptoms, but slower increase for individuals remaining cognitively normal. Detecting complex patterns of brain abnormality in very early stages of cognitive impairment has pivotal importance for the detection and management of AD.
ISSN:0197-4580
1558-1497
DOI:10.1016/j.neurobiolaging.2006.11.010