Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL23338
Saccharopolyspora erythraea is used for the industrial-scale production of the antibiotic erythromycin A, derivatives of which play a vital role in medicine. The sequenced chromosome of this soil bacterium comprises 8,212,805 base pairs, predicted to encode 7,264 genes. It is circular, like those of...
Gespeichert in:
Veröffentlicht in: | Nature biotechnology 2007-04, Vol.25 (4), p.447-453 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 453 |
---|---|
container_issue | 4 |
container_start_page | 447 |
container_title | Nature biotechnology |
container_volume | 25 |
creator | Scott, Nataliya Oliynyk, Markiyan Haydock, Stephen F Dickens, Shilo Mironenko, Tatiana Samborskyy, Markiyan Leadlay, Peter F Lester, John B |
description | Saccharopolyspora erythraea
is used for the industrial-scale production of the antibiotic erythromycin A, derivatives of which play a vital role in medicine. The sequenced chromosome of this soil bacterium comprises 8,212,805 base pairs, predicted to encode 7,264 genes. It is circular, like those of the pathogenic actinomycetes
Mycobacterium tuberculosis
and
Corynebacterium diphtheriae
, but unlike the linear chromosomes of the model actinomycete
Streptomyces coelicolor A3(2)
and the closely related
Streptomyces avermitilis
. The
S. erythraea
genome contains at least 25 gene clusters for production of known or predicted secondary metabolites, at least 72 genes predicted to confer resistance to a range of common antibiotic classes and many sets of duplicated genes to support its saprophytic lifestyle. The availability of the genome sequence of
S. erythraea
will improve insight into its biology and facilitate rational development of strains to generate high-titer producers of clinically important antibiotics. |
doi_str_mv | 10.1038/nbt1297 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_70369779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A192622750</galeid><sourcerecordid>A192622750</sourcerecordid><originalsourceid>FETCH-LOGICAL-c628t-ffafabcecafa1f1f2c6f68311575ac0535eab7b5c34e183991473d3525af81ba3</originalsourceid><addsrcrecordid>eNqN0luL1DAUAOAiintR_AVKEbw9dM1lkrSPy-BlYXBhVn0tp5mTTpc2qUkKzr_fSOsuqw-aPCQk30lywsmyZ5ScUcLL97aJlFXqQXZMxUoWVFbyYZqTUhWECnmUnYRwTQiRKykfZ0dUcVmVVBxnZu2GsceIeYvWDZgH_DGh1Zg7k8c95ugPce_dcNCdLUbvdlOatHkDOqLvpiG_Aq334N3o-kMYnYclBBDyL9vthnHOyyfZIwN9wKfLeJp9-_jh6_pzsbn8dLE-3xRasjIWxoCBRqNOAzXUMC2NLDmlQgnQRHCB0KhGaL5CWvKqoivFd1wwAaakDfDT7PV8bnppyiPEeuiCxr4Hi24KtSIpcaWqf0JGSpJerhJ8-Qe8dpO3KYmapcZXgtOEzmbUQo91Z42LHnTqOxw67SyaLq2f04pJxpQgKeDdvYBkIv6MLUwh1BdX2_-3l9_v2zez1d6F4NHUo-8G8IeakvpXpdRLpST5Yslragbc3bmlNBJ4tQAIGnrjweou3DpGJJfp4uTezi6kLduiv_ugv-98PlMLcfJ4e9bv_Rs_adwM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222234531</pqid></control><display><type>article</type><title>Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL23338</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Scott, Nataliya ; Oliynyk, Markiyan ; Haydock, Stephen F ; Dickens, Shilo ; Mironenko, Tatiana ; Samborskyy, Markiyan ; Leadlay, Peter F ; Lester, John B</creator><creatorcontrib>Scott, Nataliya ; Oliynyk, Markiyan ; Haydock, Stephen F ; Dickens, Shilo ; Mironenko, Tatiana ; Samborskyy, Markiyan ; Leadlay, Peter F ; Lester, John B</creatorcontrib><description>Saccharopolyspora erythraea
is used for the industrial-scale production of the antibiotic erythromycin A, derivatives of which play a vital role in medicine. The sequenced chromosome of this soil bacterium comprises 8,212,805 base pairs, predicted to encode 7,264 genes. It is circular, like those of the pathogenic actinomycetes
Mycobacterium tuberculosis
and
Corynebacterium diphtheriae
, but unlike the linear chromosomes of the model actinomycete
Streptomyces coelicolor A3(2)
and the closely related
Streptomyces avermitilis
. The
S. erythraea
genome contains at least 25 gene clusters for production of known or predicted secondary metabolites, at least 72 genes predicted to confer resistance to a range of common antibiotic classes and many sets of duplicated genes to support its saprophytic lifestyle. The availability of the genome sequence of
S. erythraea
will improve insight into its biology and facilitate rational development of strains to generate high-titer producers of clinically important antibiotics.</description><identifier>ISSN: 1087-0156</identifier><identifier>EISSN: 1546-1696</identifier><identifier>DOI: 10.1038/nbt1297</identifier><identifier>PMID: 17369815</identifier><identifier>CODEN: NABIF9</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>Agriculture ; Antibiotics ; Bacteria ; Bioinformatics ; Biological and medical sciences ; Biology of microorganisms of confirmed or potential industrial interest ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biomedical research ; Biomedicine ; Biotechnology ; Chromosomes ; Chromosomes, Bacterial - genetics ; Corynebacterium diphtheriae ; Drug Resistance, Microbial ; Erythromycin - biosynthesis ; Fundamental and applied biological sciences. Psychology ; Genes, Bacterial ; Genetics ; Genome, Bacterial ; Genomics ; Life Sciences ; Metabolites ; Mission oriented research ; Molecular Sequence Data ; Mycobacterium tuberculosis ; Pharmaceutical industry ; Saccharopolyspora - genetics ; Saccharopolyspora erythraea ; Secondary metabolites ; Sequence Analysis, DNA ; Streptomyces avermitilis ; Streptomyces coelicolor ; Streptomyces coelicolor - genetics ; Tuberculosis</subject><ispartof>Nature biotechnology, 2007-04, Vol.25 (4), p.447-453</ispartof><rights>The Author(s) 2007</rights><rights>2009 INIST-CNRS</rights><rights>COPYRIGHT 2007 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Apr 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c628t-ffafabcecafa1f1f2c6f68311575ac0535eab7b5c34e183991473d3525af81ba3</citedby><cites>FETCH-LOGICAL-c628t-ffafabcecafa1f1f2c6f68311575ac0535eab7b5c34e183991473d3525af81ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2727,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20636192$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17369815$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Scott, Nataliya</creatorcontrib><creatorcontrib>Oliynyk, Markiyan</creatorcontrib><creatorcontrib>Haydock, Stephen F</creatorcontrib><creatorcontrib>Dickens, Shilo</creatorcontrib><creatorcontrib>Mironenko, Tatiana</creatorcontrib><creatorcontrib>Samborskyy, Markiyan</creatorcontrib><creatorcontrib>Leadlay, Peter F</creatorcontrib><creatorcontrib>Lester, John B</creatorcontrib><title>Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL23338</title><title>Nature biotechnology</title><addtitle>Nat Biotechnol</addtitle><addtitle>Nat Biotechnol</addtitle><description>Saccharopolyspora erythraea
is used for the industrial-scale production of the antibiotic erythromycin A, derivatives of which play a vital role in medicine. The sequenced chromosome of this soil bacterium comprises 8,212,805 base pairs, predicted to encode 7,264 genes. It is circular, like those of the pathogenic actinomycetes
Mycobacterium tuberculosis
and
Corynebacterium diphtheriae
, but unlike the linear chromosomes of the model actinomycete
Streptomyces coelicolor A3(2)
and the closely related
Streptomyces avermitilis
. The
S. erythraea
genome contains at least 25 gene clusters for production of known or predicted secondary metabolites, at least 72 genes predicted to confer resistance to a range of common antibiotic classes and many sets of duplicated genes to support its saprophytic lifestyle. The availability of the genome sequence of
S. erythraea
will improve insight into its biology and facilitate rational development of strains to generate high-titer producers of clinically important antibiotics.</description><subject>Agriculture</subject><subject>Antibiotics</subject><subject>Bacteria</subject><subject>Bioinformatics</subject><subject>Biological and medical sciences</subject><subject>Biology of microorganisms of confirmed or potential industrial interest</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedical research</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Chromosomes</subject><subject>Chromosomes, Bacterial - genetics</subject><subject>Corynebacterium diphtheriae</subject><subject>Drug Resistance, Microbial</subject><subject>Erythromycin - biosynthesis</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genes, Bacterial</subject><subject>Genetics</subject><subject>Genome, Bacterial</subject><subject>Genomics</subject><subject>Life Sciences</subject><subject>Metabolites</subject><subject>Mission oriented research</subject><subject>Molecular Sequence Data</subject><subject>Mycobacterium tuberculosis</subject><subject>Pharmaceutical industry</subject><subject>Saccharopolyspora - genetics</subject><subject>Saccharopolyspora erythraea</subject><subject>Secondary metabolites</subject><subject>Sequence Analysis, DNA</subject><subject>Streptomyces avermitilis</subject><subject>Streptomyces coelicolor</subject><subject>Streptomyces coelicolor - genetics</subject><subject>Tuberculosis</subject><issn>1087-0156</issn><issn>1546-1696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqN0luL1DAUAOAiintR_AVKEbw9dM1lkrSPy-BlYXBhVn0tp5mTTpc2qUkKzr_fSOsuqw-aPCQk30lywsmyZ5ScUcLL97aJlFXqQXZMxUoWVFbyYZqTUhWECnmUnYRwTQiRKykfZ0dUcVmVVBxnZu2GsceIeYvWDZgH_DGh1Zg7k8c95ugPce_dcNCdLUbvdlOatHkDOqLvpiG_Aq334N3o-kMYnYclBBDyL9vthnHOyyfZIwN9wKfLeJp9-_jh6_pzsbn8dLE-3xRasjIWxoCBRqNOAzXUMC2NLDmlQgnQRHCB0KhGaL5CWvKqoivFd1wwAaakDfDT7PV8bnppyiPEeuiCxr4Hi24KtSIpcaWqf0JGSpJerhJ8-Qe8dpO3KYmapcZXgtOEzmbUQo91Z42LHnTqOxw67SyaLq2f04pJxpQgKeDdvYBkIv6MLUwh1BdX2_-3l9_v2zez1d6F4NHUo-8G8IeakvpXpdRLpST5Yslragbc3bmlNBJ4tQAIGnrjweou3DpGJJfp4uTezi6kLduiv_ugv-98PlMLcfJ4e9bv_Rs_adwM</recordid><startdate>20070401</startdate><enddate>20070401</enddate><creator>Scott, Nataliya</creator><creator>Oliynyk, Markiyan</creator><creator>Haydock, Stephen F</creator><creator>Dickens, Shilo</creator><creator>Mironenko, Tatiana</creator><creator>Samborskyy, Markiyan</creator><creator>Leadlay, Peter F</creator><creator>Lester, John B</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7QL</scope><scope>7X8</scope></search><sort><creationdate>20070401</creationdate><title>Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL23338</title><author>Scott, Nataliya ; Oliynyk, Markiyan ; Haydock, Stephen F ; Dickens, Shilo ; Mironenko, Tatiana ; Samborskyy, Markiyan ; Leadlay, Peter F ; Lester, John B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c628t-ffafabcecafa1f1f2c6f68311575ac0535eab7b5c34e183991473d3525af81ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Agriculture</topic><topic>Antibiotics</topic><topic>Bacteria</topic><topic>Bioinformatics</topic><topic>Biological and medical sciences</topic><topic>Biology of microorganisms of confirmed or potential industrial interest</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedical research</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Chromosomes</topic><topic>Chromosomes, Bacterial - genetics</topic><topic>Corynebacterium diphtheriae</topic><topic>Drug Resistance, Microbial</topic><topic>Erythromycin - biosynthesis</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genes, Bacterial</topic><topic>Genetics</topic><topic>Genome, Bacterial</topic><topic>Genomics</topic><topic>Life Sciences</topic><topic>Metabolites</topic><topic>Mission oriented research</topic><topic>Molecular Sequence Data</topic><topic>Mycobacterium tuberculosis</topic><topic>Pharmaceutical industry</topic><topic>Saccharopolyspora - genetics</topic><topic>Saccharopolyspora erythraea</topic><topic>Secondary metabolites</topic><topic>Sequence Analysis, DNA</topic><topic>Streptomyces avermitilis</topic><topic>Streptomyces coelicolor</topic><topic>Streptomyces coelicolor - genetics</topic><topic>Tuberculosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scott, Nataliya</creatorcontrib><creatorcontrib>Oliynyk, Markiyan</creatorcontrib><creatorcontrib>Haydock, Stephen F</creatorcontrib><creatorcontrib>Dickens, Shilo</creatorcontrib><creatorcontrib>Mironenko, Tatiana</creatorcontrib><creatorcontrib>Samborskyy, Markiyan</creatorcontrib><creatorcontrib>Leadlay, Peter F</creatorcontrib><creatorcontrib>Lester, John B</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>MEDLINE - Academic</collection><jtitle>Nature biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scott, Nataliya</au><au>Oliynyk, Markiyan</au><au>Haydock, Stephen F</au><au>Dickens, Shilo</au><au>Mironenko, Tatiana</au><au>Samborskyy, Markiyan</au><au>Leadlay, Peter F</au><au>Lester, John B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL23338</atitle><jtitle>Nature biotechnology</jtitle><stitle>Nat Biotechnol</stitle><addtitle>Nat Biotechnol</addtitle><date>2007-04-01</date><risdate>2007</risdate><volume>25</volume><issue>4</issue><spage>447</spage><epage>453</epage><pages>447-453</pages><issn>1087-0156</issn><eissn>1546-1696</eissn><coden>NABIF9</coden><abstract>Saccharopolyspora erythraea
is used for the industrial-scale production of the antibiotic erythromycin A, derivatives of which play a vital role in medicine. The sequenced chromosome of this soil bacterium comprises 8,212,805 base pairs, predicted to encode 7,264 genes. It is circular, like those of the pathogenic actinomycetes
Mycobacterium tuberculosis
and
Corynebacterium diphtheriae
, but unlike the linear chromosomes of the model actinomycete
Streptomyces coelicolor A3(2)
and the closely related
Streptomyces avermitilis
. The
S. erythraea
genome contains at least 25 gene clusters for production of known or predicted secondary metabolites, at least 72 genes predicted to confer resistance to a range of common antibiotic classes and many sets of duplicated genes to support its saprophytic lifestyle. The availability of the genome sequence of
S. erythraea
will improve insight into its biology and facilitate rational development of strains to generate high-titer producers of clinically important antibiotics.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>17369815</pmid><doi>10.1038/nbt1297</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1087-0156 |
ispartof | Nature biotechnology, 2007-04, Vol.25 (4), p.447-453 |
issn | 1087-0156 1546-1696 |
language | eng |
recordid | cdi_proquest_miscellaneous_70369779 |
source | MEDLINE; Nature; Alma/SFX Local Collection |
subjects | Agriculture Antibiotics Bacteria Bioinformatics Biological and medical sciences Biology of microorganisms of confirmed or potential industrial interest Biomedical and Life Sciences Biomedical Engineering/Biotechnology Biomedical research Biomedicine Biotechnology Chromosomes Chromosomes, Bacterial - genetics Corynebacterium diphtheriae Drug Resistance, Microbial Erythromycin - biosynthesis Fundamental and applied biological sciences. Psychology Genes, Bacterial Genetics Genome, Bacterial Genomics Life Sciences Metabolites Mission oriented research Molecular Sequence Data Mycobacterium tuberculosis Pharmaceutical industry Saccharopolyspora - genetics Saccharopolyspora erythraea Secondary metabolites Sequence Analysis, DNA Streptomyces avermitilis Streptomyces coelicolor Streptomyces coelicolor - genetics Tuberculosis |
title | Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL23338 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T11%3A46%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complete%20genome%20sequence%20of%20the%20erythromycin-producing%20bacterium%20Saccharopolyspora%20erythraea%20NRRL23338&rft.jtitle=Nature%20biotechnology&rft.au=Scott,%20Nataliya&rft.date=2007-04-01&rft.volume=25&rft.issue=4&rft.spage=447&rft.epage=453&rft.pages=447-453&rft.issn=1087-0156&rft.eissn=1546-1696&rft.coden=NABIF9&rft_id=info:doi/10.1038/nbt1297&rft_dat=%3Cgale_proqu%3EA192622750%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222234531&rft_id=info:pmid/17369815&rft_galeid=A192622750&rfr_iscdi=true |