compact computational model for cell construct development in perfusion culture
A problem nowadays tissue engineers encounter in developing sizable tissue implants is the nonuniform spread of cells and/or extracellular matrices. Research shows such a nutrients transport restriction may be improved by employing hydrodynamic culture systems. We propose a compact model for the sim...
Gespeichert in:
Veröffentlicht in: | Biotechnology and bioengineering 2008-04, Vol.99 (6), p.1535-1541 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A problem nowadays tissue engineers encounter in developing sizable tissue implants is the nonuniform spread of cells and/or extracellular matrices. Research shows such a nutrients transport restriction may be improved by employing hydrodynamic culture systems. We propose a compact model for the simulation of cell growth in a porous construct under direct perfusion. Unlike the previous model proposed in the literature, which composes a cellular scaffold sandwiched between two culture media layers, the current model includes only the scaffold layer to simplify the mathematical and computational complex. Results show the present single-layer model can predict cell spreads and the nutrient and metabolic waste distribution as accurately as does the three-layer model. Only if the hydrodynamic aspects such as the pressure and viscous stress are prominent to know, should the more sophisticated analyses with the three-layer model be employed. The compact model provides comparable investigations for the tissue-engineering construct developments. Biotechnol. Bioeng. 2008;99: 1535-1541. |
---|---|
ISSN: | 0006-3592 1097-0290 |
DOI: | 10.1002/bit.21701 |