Simultaneous normal and shear measurements of nanoconfined liquids in a fiber-based atomic force microscope

We have developed an atomic force microscopy (AFM) technique that can perform simultaneous normal and shear stiffness measurements of nanoconfined liquids with angstrom-range amplitudes. The AFM technique is based on a fiber-interferometric, small-amplitude, off-resonance AFM. This AFM is capable of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2008-02, Vol.79 (2 Pt 1), p.023706-023706
Hauptverfasser: Matei, George, Jeffery, Steve, Patil, Shivprasad, Khan, Shah H, Pantea, Mircea, Pethica, John B, Hoffmann, Peter M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have developed an atomic force microscopy (AFM) technique that can perform simultaneous normal and shear stiffness measurements of nanoconfined liquids with angstrom-range amplitudes. The AFM technique is based on a fiber-interferometric, small-amplitude, off-resonance AFM. This AFM is capable of providing linear quasistatic measurements of the local mechanical properties of confined liquid layers while only minimally disturbing the layers themselves. A detailed analysis of the measurement geometry reveals that shear stiffness measurements are extremely challenging, as even small deviations from perfect orthogonality can lead to data that is very difficult to interpret. We will show ways out of this dilemma and present results that show simultaneous measurement of the shear and normal stiffness of confined liquid layers.
ISSN:0034-6748
1089-7623
DOI:10.1063/1.2839913