Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors

We developed a chemical route to produce graphene nanoribbons (GNR) with width below 10 nanometers, as well as single ribbons with varying widths along their lengths or containing lattice-defined graphene junctions for potential molecular electronics. The GNRs were solution-phase-derived, stably sus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2008-02, Vol.319 (5867), p.1229-1232
Hauptverfasser: Li, Xiaolin, Wang, Xinran, Zhang, Li, Lee, Sangwon, Dai, Hongjie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We developed a chemical route to produce graphene nanoribbons (GNR) with width below 10 nanometers, as well as single ribbons with varying widths along their lengths or containing lattice-defined graphene junctions for potential molecular electronics. The GNRs were solution-phase-derived, stably suspended in solvents with noncovalent polymer functionalization, and exhibited ultrasmooth edges with possibly well-defined zigzag or armchair-edge structures. Electrical transport experiments showed that, unlike single-walled carbon nanotubes, all of the sub-10-nanometer GNRs produced were semiconductors and afforded graphene field effect transistors with on-off ratios of about 10⁷ at room temperature.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.1150878