A comparison of strategies for Markov chain Monte Carlo computation in quantitative genetics

In quantitative genetics, Markov chain Monte Carlo (MCMC) methods are indispensable for statistical inference in non-standard models like generalized linear models with genetic random effects or models with genetically structured variance heterogeneity. A particular challenge for MCMC applications i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genetics selection evolution (Paris) 2008-03, Vol.40 (2), p.161-176
Hauptverfasser: Waagepetersen, Rasmus, Ibánez-Escriche, Noelia, Sorensen, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In quantitative genetics, Markov chain Monte Carlo (MCMC) methods are indispensable for statistical inference in non-standard models like generalized linear models with genetic random effects or models with genetically structured variance heterogeneity. A particular challenge for MCMC applications in quantitative genetics is to obtain efficient updates of the high-dimensional vectors of genetic random effects and the associated covariance parameters. We discuss various strategies to approach this problem including reparameterization, Langevin-Hastings updates, and updates based on normal approximations. The methods are compared in applications to Bayesian inference for three data sets using a model with genetically structured variance heterogeneity.
ISSN:0999-193X
1297-9686
DOI:10.1051/gse:2007042