Methyl-beta-cyclodextrin reversibly alters the gating of lipid rafts-associated Kv1.3 channels in Jurkat T lymphocytes
The voltage-dependent Kv1.3 potassium channels mediate a variety of physiological functions in human T lymphocytes. These channels, along with their multiple regulatory components, are localized in cholesterol-enriched microdomains of plasma membrane (lipid rafts). In this study, patch-clamp techniq...
Gespeichert in:
Veröffentlicht in: | Pflügers Archiv 2007-05, Vol.454 (2), p.235-244 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The voltage-dependent Kv1.3 potassium channels mediate a variety of physiological functions in human T lymphocytes. These channels, along with their multiple regulatory components, are localized in cholesterol-enriched microdomains of plasma membrane (lipid rafts). In this study, patch-clamp technique was applied to explore the impact of the lipid-raft integrity on the Kv1.3 channel functional characteristics. T lymphoma Jurkat cells were treated for 1 h with cholesterol-binding oligosaccharide methyl-beta-cyclodextrin (MbetaCD) in 1 or 2 mM concentration, resulting in depletion of cholesterol by 63 +/- 5 or 75 +/- 4%, respectively. Treatment with 2 mM MbetaCD did not affect the cells viability but retarded the cell proliferation. The latter treatment caused a depolarizing shift of the Kv1.3 channel activation and inactivation by 11 and 6 mV, respectively, and more than twofold decrease in the steady-state activity at depolarizing potentials. Altogether, these changes underlie the depolarization of membrane potential, recorded in a current-clamp mode. The effects of MbetaCD were concentration- and time-dependent and reversible. Both development and recovery of the MbetaCD effects were completed within 1-2 h. Therefore, cholesterol depletion causes significant alterations in the Kv1.3 channel function, whereas T cells possess a potential to reverse these changes. |
---|---|
ISSN: | 0031-6768 1432-2013 |
DOI: | 10.1007/s00424-007-0208-4 |