OH, HO2, and Ozone Gaseous Diffusion Coefficients
The diffusion of OH, HO2, and O3 in He, and of OH in air, has been investigated using a coated-wall flow tube reactor coupled to a chemical ionization mass spectrometry. The diffusion coefficients were determined from measurements of the loss of the reactive species to the flow tube wall as a functi...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2007-03, Vol.111 (9), p.1632-1637 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The diffusion of OH, HO2, and O3 in He, and of OH in air, has been investigated using a coated-wall flow tube reactor coupled to a chemical ionization mass spectrometry. The diffusion coefficients were determined from measurements of the loss of the reactive species to the flow tube wall as a function of pressure. On the basis of the experimental results, D OH−He = 662 ± 33 Torr cm2 s-1, D OH-air = 165 ± 20 Torr cm2 s-1, D HO 2 -He = 430 ± 30 Torr cm2 s-1, and D O 3 -He = 410 ± 25 Torr cm2 s-1 at 296 K. We show that the measured values for OH and HO2 are in better agreement with measured values of their polar analogues (H2O and H2O2) compared with measured values of their nonpolar analogues (O and O2). The measured value for OH in air is 25% smaller than that for O (the nonpolar analogue). The difference between the measured value for HO2 and O2 (the nonpolar analogue) in air is expected to be even larger. Also we show that calculations of the diffusion coefficients based on Lennard−Jones potentials are in excellent agreement with the measurements. This gives further confidence that these calculations can be used to estimate accurate diffusion coefficients for conditions where laboratory data currently do not exist. |
---|---|
ISSN: | 1089-5639 1520-5215 |
DOI: | 10.1021/jp066558w |