Estimation and Confidence Regions for Multi-Dimensional Effective Dose
The problem of finding confidence regions for multiple predictor variables corresponding to given expected values of a response variable has not been adequately resolved. Motivated by an example from a study on hyperbaric exposure using a logistic regression model, we develop a conceptual framework...
Gespeichert in:
Veröffentlicht in: | Biometrical journal 2008-02, Vol.50 (1), p.110-122 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The problem of finding confidence regions for multiple predictor variables corresponding to given expected values of a response variable has not been adequately resolved. Motivated by an example from a study on hyperbaric exposure using a logistic regression model, we develop a conceptual framework for the estimation of the multi‐dimensional effective dose for binary outcomes. The k ‐dimensional effective dose can be determined by conditioning on k – 1 components and solving for the last component as a conditional univariate effective dose. We consider various approaches for calculating confidence regions for the multi‐dimensional effective dose and compare them via a simulation study for a range of possible designs. We analyze data related to decompression sickness to illustrate our procedure. Our results provide a practical approach to finding confidence regions for predictor variables for a given response value. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) |
---|---|
ISSN: | 0323-3847 1521-4036 |
DOI: | 10.1002/bimj.200710376 |