A 3-D dielectrophoretic filter chip

The paper presents a 3‐D filter chip employing both mechanical and dielectrophoretic (DEP) filtration, and its corresponding microfabrication techniques. The device structure is similar to a classical capacitor: two planar electrodes, made from a stainless steel mesh, and bonded on both sides of a g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrophoresis 2007-04, Vol.28 (7), p.1107-1114
Hauptverfasser: Iliescu, Ciprian, Xu, Guolin, Loe, Felicia Celeste, Ong, Poh Lam, Tay, Francis E. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper presents a 3‐D filter chip employing both mechanical and dielectrophoretic (DEP) filtration, and its corresponding microfabrication techniques. The device structure is similar to a classical capacitor: two planar electrodes, made from a stainless steel mesh, and bonded on both sides of a glass frame filled with round silica beads. The solution with the suspension of particles flows through both the mesh‐electrodes and silica beads filter. The top stainless steel mesh (with openings of 60 μm and wires of 30 μm‐thickness) provides the first stage of filtration based on mechanical trapping. A second level of filtration is based on DEP by using the nonuniformities of the electric field generated in the capacitor due to the nonuniformities of the dielectric medium. The filter can work also with DC and AC electric fields. The device was tested with yeast cells (Saccharomyces cerevisae) and achieved a maximal trapping efficiency of 75% at an applied AC voltage of 200 V and a flow rate of 0.1 mL/min, from an initial concentration of cells of 5×105 cells/mL. When the applied frequency was varieted in the range between 20 and 200 kHz, a minimal value of capture efficiency (3%) was notticed at 50 kHz, when yeast cells exhibit negative DEP and the cells are repelled in the space between the beads.
ISSN:0173-0835
1522-2683
DOI:10.1002/elps.200600431