Absence of the chemokine receptor CCR2 protects against cerebral ischemia/reperfusion injury in mice

The chemokine, monocyte chemoattractant protein-1 (CCL2), is a major factor driving leukocyte infiltration into the brain parenchyma in a variety of neuropathologic conditions associated with inflammation, including stroke. In addition, recent studies indicate that CCL2 and its receptor (CCR2) could...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stroke (1970) 2007-04, Vol.38 (4), p.1345-1353
Hauptverfasser: DIMITRIJEVIC, Oliver B, STAMATOVIC, Svetlana M, KEEP, Richard F, ANDJELKOVIC, Anuska V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The chemokine, monocyte chemoattractant protein-1 (CCL2), is a major factor driving leukocyte infiltration into the brain parenchyma in a variety of neuropathologic conditions associated with inflammation, including stroke. In addition, recent studies indicate that CCL2 and its receptor (CCR2) could have an important role in regulating blood-brain barrier (BBB) permeability. This study evaluated the role of the CCL2/CCR2 axis in regulating postischemic inflammation, BBB breakdown, and vasogenic edema formation. CCR2(-/-) and CCR2(+/+) mice were subjected to focal transient cerebral ischemia. BBB permeability and brain edema formation were observed at days 1 and 5 of reperfusion by evaluating the product surface area for fluorescein isothiocyanate-albumin and measuring water and electrolyte contents. Immunohistochemistry was used to assess leukocyte infiltration. cDNA gene and protein arrays for inflammatory cytokines were used to assess inflammatory profiles in CCR2(+/+) and CCR2(-/-) mice. CCR2(-/-) mice had reduced infarct sizes and significantly reduced BBB permeability and brain edema formation in the affected ischemic hemisphere compared with CCR2(+/+) mice. This reduction in injury was closely associated with reduced infiltration of not only monocytes but also neutrophils (7- and 4-fold decreases, respectively). In addition, CCR2(-/-) mice had reduced expression/production of inflammatory cytokines during reperfusion. These data suggest that inhibiting the CCL2/CCR2 axis affects brain reperfusion outcome by reducing brain edema, leukocyte infiltration, and inflammatory mediator expression.
ISSN:0039-2499
1524-4628
DOI:10.1161/01.STR.0000259709.16654.8f