Accurate Solubility Prediction with Error Bars for Electrolytes:  A Machine Learning Approach

Accurate in silico models for predicting aqueous solubility are needed in drug design and discovery and many other areas of chemical research. We present a statistical modeling of aqueous solubility based on measured data, using a Gaussian Process nonlinear regression model (GPsol). We compare our r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical information and modeling 2007-03, Vol.47 (2), p.407-424
Hauptverfasser: Schwaighofer, Anton, Schroeter, Timon, Mika, Sebastian, Laub, Julian, ter Laak, Antonius, Sülzle, Detlev, Ganzer, Ursula, Heinrich, Nikolaus, Müller, Klaus-Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Accurate in silico models for predicting aqueous solubility are needed in drug design and discovery and many other areas of chemical research. We present a statistical modeling of aqueous solubility based on measured data, using a Gaussian Process nonlinear regression model (GPsol). We compare our results with those of 14 scientific studies and 6 commercial tools. This shows that the developed model achieves much higher accuracy than available commercial tools for the prediction of solubility of electrolytes. On top of the high accuracy, the proposed machine learning model also provides error bars for each individual prediction.
ISSN:1549-9596
1549-960X
DOI:10.1021/ci600205g