Superparamagnetic Iron Oxide Labeling and Transplantation of Adipose-Derived Stem Cells in Middle Cerebral Artery Occlusion-Injured Mice
Adipose-derived stem cells are an alternative stem cell source for CNS therapies. The goals of the current study were to label adipose-derived stem cells with superparamagnetic iron oxide (SPIO) particles, to use MRI to guide the transplantation of adipose-derived stem cells in middle cerebral arter...
Gespeichert in:
Veröffentlicht in: | American journal of roentgenology (1976) 2007-04, Vol.188 (4), p.1101-1108 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Adipose-derived stem cells are an alternative stem cell source for CNS therapies. The goals of the current study were to label adipose-derived stem cells with superparamagnetic iron oxide (SPIO) particles, to use MRI to guide the transplantation of adipose-derived stem cells in middle cerebral artery occlusion (MCAO)-injured mice, and to localize donor adipose-derived stem cells in the injured brain using MRI. We hypothesized that we would successfully label adipose-derived stem cells and image them with MRI.
Adipose-derived stem cells harvested from mice inbred for green fluorescent protein were labeled with SPIO ferumoxide particles through the use of poly-L-lysine. Adipose-derived stem cell viability, iron staining, and proliferation were measured after SPIO labeling, and the sensitivity of MRI in the detection of SPIO-labeled adipose-derived stem cells was assessed ex vivo. Adult mice (n = 12) were subjected to unilateral MCAO. Two weeks later, in vivo 7-T MRI was performed to guide stereotactic transplantation of SPIO-labeled adipose-derived stem cells into brain tissue adjacent to the infarct. After 24 hours, the mice were sacrificed for high-resolution ex vivo 7-T or 9.4-T MRI and histologic study.
Adipose-derived stem cells were efficiently labeled with SPIO particles without loss of cell viability or proliferation. Using MRI, we guided precise transplantation of adipose-derived stem cells. MR images of mice given injections of SPIO-labeled adipose-derived stem cells had hypointense regions that correlated with the histologic findings in donor cells.
MRI proved useful in transplantation of adipose-derived stem cells in vivo. This imaging technique may be useful for studies of CNS stem cell therapies. |
---|---|
ISSN: | 0361-803X 1546-3141 |
DOI: | 10.2214/AJR.06.0663 |