STIM1 Is a MT-Plus-End-Tracking Protein Involved in Remodeling of the ER
Stromal interaction molecule 1 (STIM1) is a transmembrane protein that is essential for store-operated Ca2+ entry, a process of extracellular Ca2+ influx in response to the depletion of Ca2+ stores in the endoplasmic reticulum (ER) (reviewed in [1–4]). STIM1 localizes predominantly to the ER; upon C...
Gespeichert in:
Veröffentlicht in: | Current biology 2008-02, Vol.18 (3), p.177-182 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Stromal interaction molecule 1 (STIM1) is a transmembrane protein that is essential for store-operated Ca2+ entry, a process of extracellular Ca2+ influx in response to the depletion of Ca2+ stores in the endoplasmic reticulum (ER) (reviewed in [1–4]). STIM1 localizes predominantly to the ER; upon Ca2+ release from the ER, STIM1 translocates to the ER-plasma membrane junctions and activates Ca2+ channels (reviewed in [1–4]). Here, we show that STIM1 directly binds to the microtubule-plus-end-tracking protein EB1 and forms EB1-dependent comet-like accumulations at the sites where polymerizing microtubule ends come in contact with the ER network. Therefore, the previously observed tubulovesicular motility of GFP-STIM1 [5] is not a motor-based movement but a traveling wave of diffusion-dependent STIM1 concentration in the ER membrane. STIM1 overexpression strongly stimulates ER extension occurring through the microtubule “tip attachment complex” (TAC) mechanism [6, 7], a process whereby an ER tubule attaches to and elongates together with the EB1-positive end of a growing microtubule. Depletion of STIM1 and EB1 decreases TAC-dependent ER protrusion, indicating that microtubule growth-dependent concentration of STIM1 in the ER membrane plays a role in ER remodeling. |
---|---|
ISSN: | 0960-9822 1879-0445 |
DOI: | 10.1016/j.cub.2007.12.050 |